
LRU strategy for I frame reduction

Ruiduo Yang and Michael S.Brown

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{yangrd,brown}@cs.ust.hk

Abstract

Frequent placement of intra-encoded pictures, or I-
frames, in MPEG video facilitates (1) error resilience
over lossy network transmission and (2) random access
for VCR like functionality. However, high I-frame
frequency sacrifices quality-to-bitrate efficiency that can
be gained by using longer sequences of inter-encode
pictures. In this paper, we present a simple strategy that
emulates frequent I-frame encoding while using fewer I-
frames. Our approach maintains small set of previously
encoded/decoded I-frames that can be re-used to start
future GOPs. We overview our approach and show how a
least-recently-used (LRU) policy can be used to maintain
the set of I-frames. We demonstrate gains in PSNR for
constant bit rate encoding using our strategy.

1. Introduction
MPEG-based encoded video uses a combination of intra-
encoded and inter-encoded frames to compose its
compressed video stream. Intra-encoded frames (I-frames)
can be independently encoded and decoded. Inter-
encoded frames (P-frames and B-frames) exploit temporal
redundancy using motion compensated residual coding
strategies. P/B frames encode their difference to one or
two reference frames and are dependent on these
reference frames for their reconstruction. MPEG
organizes encoded frames into a structure called a group
of pictures (GOP), which starts with an I-frame followed a
series of inter-encoded frames. The size of the GOP can
be considered the distance between I-frames. In terms of
bits-per-frame compression, I-frames are often several
times larger than inter-encoded frames. Thus, higher
quality-to-bitrate can typically be achieved by using long
sequences of inter-encode frames.
The MPEG encoding syntax allows encoder decisions to
be made that can affect quality-to-bitrate performance.
This has lead many researches to explore improvements
by adaptive I-frame placement, or dynamic GOPs. For
example, Lan et al[1] used scene motion detection to

determine content change for I-frame placement, using a
long run of inter-coded frames until a substantial scene
change was detected. Yoneyama et al[7] examined
macroblock motion vector activity to determine where to
start new GOPS. Turaga et al [4] presented as
classification approach, training a video-encoder with
sample video clips to guide the I-frame selection. While
all of these approaches reported quality-to-bitrate
improvements, their use of arbitrary sized and typically
long GOPs has some undesirable drawbacks over high I-
frame placement.
Frequent I-frames placement provides two important
functions. First, because I-frames are self-contained, they
provide a mechanism to randomly access frames in the
compressed stream. Random access allows applications
to provide VCR like functionality such as fast-forward
and rewind. I-frame frequency determines the granularity
of this random access. Second, I-frames provide error
resilience for noisy network transmission. If a portion of
a transmitted frame is corrupted, the error can be
propagated by the predictive nature of B/P frames.
Sending frequent I-frames can help stop such pixel error
propagation.
The challenge then is to provide the functionality of
frequent I-frame placement while providing high quality-
to-bitrate efficiency. We address this problem using an
encoding strategy that reduces the number of I-frames
while maintaining the functionality of frequent I-frame
placement. Our approach maintains a small set of
previously en/decoded I-frames, called the working-set.
Working-set frames can be used as reference frames of
the start of future GOPs often avoiding the encoding of
new I-frames. Moreover, each GOP's start frame can still
be randomly accessed because the necessary reference
frame is buffered in the working-set. In the remainder of
this paper, we describe in detail our approach (section 2)
and show that a least-recently-used strategy is effective
for maintaining the working-set frames (section 3).
Section 4 explains our integration into an MPEG-2 codec

and demonstrates our results. We finish with concluding
remarks in section 5.
2. Overview of the working-set frame
replacement

We borrowed the term ``working-set'' from operating
system's vernacular which describes a memory paging
approach for virtual memory. In an OS context, a process
keeps a set of memory pages (called its ``working-set'')
that are pre-fetched onto the system's memory when the
process is context switched onto the CPU. The working-
set is a reasonable-guess of the most useful pages (useful
in terms of memory access hit ratios) for the process. We
liken our I-frame replacement problem to memory paging.
In a video coding context, our ``working-set'' is a
reasonable-guess of the most useful I-frames that have
already been encoded. These I-frames are useful in that
they are similar enough to future I-frames to be used as
reference frames for subsequent I-frames.

I−Frame 123

I−Frame 145

I−Frame 63

I−Frame 12

Encode candidate as I−Frame
use WS(i) with min Score as reference

Encode Candidate as P−frame

(Previously Encoded/Decoded I−frames)

Delete (Update Working−Set) (I−frame Reduction)

FIND SIMILAR FRAME
STEP 1 (Specified GOP Frequency)

Video Frames

Working−Set I−frames

with working−set frames

WS Frames

Compare candidate I−frame

from set

Yes

WS(i)

No

ENCODING DECISION

Score < Threshold

STEP 2

i
Score = min | Candidate − WS(i) |

I−frame
Candidate

I−frame

I−frame
Candidate

Candidate

?

Figure 1: Overview of the working-set frame replacement. Both

the encoder and decoder keep a set of previously
encoded/decoded I-frames. The I-frame frequency is specified by
a GOP size. When it is time to encode a new I-frame (called a

candidate I-frames), the most similar working-set frame is found
using an SAD metric. If the most similar frame passes an

``acceptance threshold'', the candidate frame is inter-encoded
using the similar working-set frame as a reference. Otherwise,
the current frame is encoded as an I-frame and is placed in the

working-set using an LRU replacement policy.}

Figure 1 overviews of the working-set replacement
strategy. A small set (for example 4 frames) of previously
coded I-frames are maintained on both the encoder and
decoder. Frames are considered for intra-frame encoding
based on a specified placement frequency, i.e. fixed GOP
size. In our experiments, we use a GOP size of 12, a
reasonable granularity for rewind and fast-forward
functionality. When a new GOP is to be started, a
decision is made whether or not to encode the frame as an
I-frame. In figure 1, we refer to this frame as a candidate

I-frame. The candidate I-frame is compare against all the
frames in the working-set (step 1). We use a simple sum-
of-the-absolute-difference (SAD) as follows:

∑
,

, ,∈ |),(),,(|min=||
hw

yx candidateyxiki yxImvyxWSSAD

In the above equation, i represents an index for each k
working-set frame. mv is the motion vector indicating

the displacement between the candidate frame and WS at
point , this motion vector can be acquired using a
block based motion estimation step. A pixel-wise
difference is performed for pixel over the width

and height of the frame's luminance channel.

yx,

i

),(yx

),(yx
w h
The minimum SAD score is examined to see if it is less
than a specified acceptance threshold, i.e. .
To make specifying the threshold easier, we normalize the
SAD score by dividing it by the number of pixels in the
frame -- this results in a score with a range of 0-255 (the
pixel intensity range). If the minimum SAD score is less
than the threshold, the candidate I-frame will be encoded
as a P-frame, using the most similar frame as a
reference. In this manner, the GOP does not start with an
I-frame, but instead starts with a P-frame that uses a
buffered working-set frame as a reference. Random access
can still be achieved using this approach. The start of
each GOP is either an I-frame or is P-frame whose
reference is buffered in the working-set.

wsTScore <

iWS

We note that the idea of buffering many frames on the
encoder and decoder is not new. Weigand et al [5,6]
introduced the idea of multiple reference frames (called
long term memory frames) for use in inter-frame encoding.
In their strategy, inter-frame's macroblocks can predict
themselves from any of the buffered reference frames.
This strategy has been adopted in H.263++, annex U.
Using multiple references for inter-encoding increases
coding complexity, but has been shown to provide
significant quality-to-bitrate improvements. Our idea is in
the spirit of Weigand et al, but differs in several distinct
ways. For example, we only maintain I-frames in the
working-set. In addition, our approach is only targeting
the start of each GOP and not all inter-encoded frames.
We also use a global similarity check to find a suitable
reference frame and not at the macro-block layer. Finally,
our scheme is intended for little computational overhead
to the encoder. In this section, we proposed a method to
do error
3. Lru working set maintenance
To maintain the working-set frames, we again turn our
attention to virtual memory approaches, treating frame
replacement as a paging problem. There are several
schemes for memory paging, including first in first out
(FIFO), not used recently (NUR), least recently used

(LRU) and least frequently used (LFU) (see [2] for a
refresher on memory paging). It is known that LRU is
one of the most effective paging algorithms; however, due
to implementation overhead it is rarely deployed in a
virtual memory context [2]. However, for our problem
LRU is suitable for deployment.

f4 f3 f2 f1

End

Least Recently
Used image
is removed

Working−Set { f1, f2, f3, f4}

LRU Linked−List Implementation

f2

when used, the frame is moved to the front

f7

End

a new frame is added to the front

f3f4

f4 f3 f2 f1

End

f1

Figure 2:LRU frame replacement: A list is kept of all of the

frames. When a new frame is added, or a frame in the working-
set is chosen to replace a candidate I-frame, it is moved to the
front of the list. The least recently used frame is always the at

end of the list.

As the name implies, LRU replaces the frame (or page)
that was least recently used. The LRU implementation
uses a fixed-sized linked-list data structure to store
indexes for all of the frames, as shown in figure 2. Newly
encoded I-frame is added to the front of the linked list.
When a frame in the list is used as a reference (i.e.,
replaces a candidate I-frame), it is moved to the front of
the list. With this strategy, we see that the frame at the
end of the linked list is always the frame that has been
least recently used. When the list is full and a new frame
is to be inserted, we simply remove (delete) the frame at
the end of the list, and place the new frame at the
beginning.
For virtual memory systems, LRU requires at each
memory access, the appropriate page is removed from a
linked-list and placed at the beginning. This per-access
overhead is impractical in a virtual memory context.
However, with our framework LRU is quite feasible;
assuming a maximum of 30 video frames-per-second, we
would only need to perform SAD scores and LRU update
a few times a second for short GOP patterns. Real-time
performance can be easily realized.
4. simulation results
4.1 Integration to TM5
We have integrated our proposed approach into an
MPEG-II encoder codec [3]. We changed the grammar of
MPEG bitstream slightly to add extra bits to convey

working-set update information. MPEG-II pictures start
with a Pict_type field, specifying either I,B, or P frame. If
Pict_type specifies an I-frame, we add 32 bits as follows:

PICT_TYPE WS_TYPE(1 BIT) REF_NUMBER(31 BITS)

If encoded frame is an intra-encoded frame, the ws_type
field is set to 0. The decoded I-frame is added to the
working-set. If the following 31 bits are set to 0, then no
I-frame will be replaced (as in the case when the working-
set is not full). Otherwise the 31 bit ref_number specifies
which frame to replace in the buffer.
If the frame is inter-encoded, the ws_type bit is set to 1
and the following 31 bits indicate the index of the frame
to be used as a reference. In our current implementation
we assume that I-frames will not be lost and the reference
number is consistence on both the encoder and decoder.
For network transmission, a feedback mechanism will be
needed to inform the encoder which I-frames have
successfully received. This is currently deferred to future
work.
On the decoder side, by examining the 32 bits following
an I-frame Pict_type field, the decoder can maintain the
exact working-set as used by the encoder. For random
access, the implementation of fast-forward is easy to
realize. For rewind, we can examine the 31 bits to fetch
discarded frames. It could be that the fetch frame is
temporally far from the current frame. However, if this is
the case, it implies that the fetched frame stayed in the
working-set a long time and will be referenced often, thus
its fetch time is offset by its usefulness.

4.2 Results
We compare our modified encoder to the baseline MPEG-
II encoder. We compare the PSNR of our method using
the following acceptance thresholds: 5, 10, and 15. At
this stage, we manually choose the working-set threshold.
We are examining techniques to automatically set these
values.
We show results for two sequences, Paris and News. We
use the following GOP IBBPBBPBBPBB of size 12.
During motion estimation, motion vector range is chosen
to be [-16, +15.5], [-8, +7.5] for P frames and B frames
with halfpel accuracy respectively. MQUANT value is
estimated by the same rate control method in TM5 to
obtain the specified bitrate, given in terms of bits-per-
pixel (bpp). No interlaced frame is used. We use a
working-set size of two frames.

Method (# of I
– frames) 0.1bpp 0.2bpp 0.2bpp 0.4bpp 0.5bpp

TM 5 89 89 89 89 89

Thresh=5 82 81 78 78 76

Thresh=10 21 20 18 17 17

Thresh=15 6 5 5 4 4

Table1: Number of intra-encoded frames for different bit-
perpixel (bpp) using the base-line MPEG codec and our

modified codec using different similarity thresholds.

Table 1 shows the number of I-frames actually encoded
using the different thresholds for the paris sequence. The
number of I-frames changes slightly depending on the bpp
specified. This is because the SAD scores will yield
different results based reconstructed frame.

 TM5 Thresh=5 Thresh=10 Thresh=15
0.1bpp 37.59 39.37 39.37 39.37 Akiyo 0.2bpp 41.92 42.94 42.94 42.94
0.1bpp 30.52 31.63 31.63 31.63 Brideg-Far 0.2bpp 32.64 33.40 33.42 33.42
0.1bpp 34.30 35.66 35.54 35.37 Container 0.2bpp 36.51 37.80 37.63 37.47
0.1bpp 30.25 30.33 30.96 30.90 Foreman 0.2bpp 34.04 34.34 34.57 34.49
0.1bpp 35.90 37.48 37.44 37.44 News
0.2bpp 38.50 40.10 39.92 39.92
0.1bpp 25.80 25.80 27.03 27.38 Paris 0.2bpp 29.70 29.70 32.10 31.69

Table 2: Comparison between TM5 and different threshold
settings of TM5 with LRU method based on the Average PSNR

value of Y component. Workingset size is set to be 2.

Table 2 show that by reducing I-frames encoding, gains
are made to the the average PSNR of both sequences by
around 1.5 – 2 dBs with the threshold=10-15. Figure 3
shows a frame-by-frame comparison of PSNR for our
method and the baseline TM5. We see that the majority
of frames have PSNR improvements.
5. Conclusion
In this paper, a new strategy for reducing the number I-
frames while emulating the placement of frequent I-frame
is proposed. Our approach maintains a working-set of
previously coded I-frames that can be re-used to start
future GOPs. By re-using old I-frames to start new GOPs
we reduce the total number of I-frames; this translates into
an improvement in PSNR for constant-bit-rate encoding.
We show that a least-recently-used replacement policy is
suitable for maintaining the working-set, and discuss how
to modify a MPEG codec to integrate the strategy.
6.Reference
[1] A. Y. Lan, A. G. Nguyeng, and J. N. Hwang. “Scene-
content-dependent reference frame placement for mpeg video
coding.”, IEEE Trans. Circuits and Systems Video Technology,
9(3), 1999.
[2] A. Tanenbaum. Modern Operating Systems, chapter Memory
Management – Page Replacement Algorithms, pages 214–228.
Prentice Hall, third edition, 2001.

[3] Test Model 5. ISO/IEC JTC1/SC29/WG11 N2459, 1994.
[4] D. Turaga and T. Chen. “I/p frame selection using
classification based mode decision.”, In IEEE International
Conferencing on Image Processing, Thessaloniki, Greece,
October 2001.
[5] T. Wiegand, E. Steinbach, A. Stensruf, and B. Girod.
“Multiple reference picture video coding using polynomial
motion models.”, In IEEE Visual Communication and Image
Processing, 1996.
[6] T. Wiegand, X.Z. Zhang, and B. Girod. “Long-term memory
motioncompensated predicition.”, IEEE Trans on Circuits and
Systems for Video Technology, 9(1), Feb 1999.
[7] A. Yoneyama, Y. Nakajima, H. Yanagihara, and M. Sugano.
“MPEG encoding algorithm with scene adaptive dynamic GOP
structure.”, In IEEE Third International Workshop on
Multimedia Signal Processing, pages 297–302, 1997.

Foreman (bpp=0.1)

29

29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146

Frame Number

PS
N
R
 (
dB
)

TM 5 Proposed
Paris (bpp=0.1)

25

25.5

26

26.5

27

27.5

28

28.5

29

1 46 91 136 181 226 271 316 361 406 451 496 541 586 631 676 721 766 811 856 901 946 991 1036

Frame Number

P
SN
R
 (
dB
)

TM 5 Proposed
Figure 3: Comparison between TM5 and TM5 with LRU
method based on the PSNR value of Y component of each
frame for the Paris and Foreman sequencee. (bitrate =

0.1bpp, workingset size = 2, threshold = 10.)

	1. Introduction
	2. Overview of the working-set frame replacement
	3. Lru working set maintenance
	4. simulation results
	4.1 Integration to TM5
	4.2 Results

	5. Conclusion
	6.Reference

