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Abstract

A limitation in color constancy research is the inabil-
ity to establish ground truth colors for evaluating corrected
images. Many existing datasets contain images of scenes
with a color chart included; however, only the chart’s
neutral colors (grayscale patches) are used to provide the
ground truth for illumination estimation and correction.
This is because the corrected neutral colors are known to
lie along the achromatic line in the camera’s color space
(i.e. R=G=B) ; the correct RGB values of the other color
patches are not known. As a result, most methods estimate
a 3×3 diagonal matrix that ensures only the neutral colors
are correct. In this paper, we describe how to overcome
this limitation. Specifically, we show that under certain il-
luminations, a diagonal 3×3 matrix is capable of correct-
ing not only neutral colors, but all the colors in a scene.
This finding allows us to find the ground truth RGB values
for the color chart in the camera’s color space. We show
how to use this information to correct all the images in ex-
isting datasets to have correct colors. Working from these
new color corrected datasets, we describe how to modify
existing color constancy algorithms to perform better im-
age correction.

1. Introduction
The goal of computational color constancy is to mimic

the human visual system’s ability to perceive scene objects
as the same color when they are viewed under different il-
luminations. Cameras do not intrinsically have this ability
and color changes due to scene illumination must be cor-
rected. This is a fundamental pre-processing step applied to
virtually every image.

Color constancy is typically a two-step procedure: 1) es-
timate the color of the illumination; 2) apply a transform
to remove the effects of the illumination. The majority of
published literature addresses step 1. Several datasets have
been created to assist in evaluating illumination estimation
(e.g. [1, 9, 12, 24, 32]). The basic idea is to place a neu-

2

4

>6o

Input Image Diagonal Correction Our Full Correction
(pre-correction) (neutral patches only) (all colors considered)

Reproduction error
of color patches
(mean: 0.77°)

Reproduction error
of color patches
(mean: 2.94°)

Reproduction error
of color patches
(mean: 22.29°)

A CB

Figure 1. (A) input image before illumination correction. (B)
corrected image using a conventional diagonal 3×3 matrix (i.e.
white-balancing). (C) corrected image using a full 3×3 matrix es-
timated from the ground truth colors obtained by our approach.
The reproduction angular errors for each 24 color patches are
shown below each image as a heat map (red=high error, blue=low
error).

tral (white) calibration object in the imaged scene. Under
ideal white light, the neutral object should remain achro-
matic in the camera’s color space. A chromatic color cast
on the neutral object is considered to be the color of the illu-
mination in the camera’s color space. While most methods
do not elaborate on image correction, the de facto approach
is to compute a 3×3 diagonal matrix to map the estimated
illumination RGB values to lie along R=G=B. This is ef-
fectively known as white-balancing and ensures the neutral
colors appear “white” in the corrected image. However, the
ability of this diagonal matrix to correct non-neutral colors
is ignored (Fig. 1).

This is a significant limitation, because the goal of color
constancy is to make all colors correct, not just neutral col-
ors. Early color constancy datasets are suitable only for
illumination estimation as they only contain a neutral cal-
ibration pattern. Newer datasets, such as the widely used
Gelher-Shi [24, 32] and the recent NUS dataset [9] include
a color rendition chart in every image. However, only the
neutral patches on these color charts are used for perfor-
mance evaluation. The problem is that unlike a neutral ma-
terial, the ground truth RGB values of the color patches are
not known in the camera’s color space. While color ren-



dition charts have known mapping values in the CIE XYZ
color space, color constancy correction is performed in the
camera’s color space [8, 29]. Currently, the only way to esti-
mate these colors is with spectral information, including the
camera sensor sensitivity functions, spectral reflectances of
the patches, and spectra of the illumination. Such spectral
data is challenging to obtain, and as a result, most existing
color constancy datasets cannot be used to evaluate the per-
formance of color correction.

Contributions This paper makes four contributions to-
wards better image correction for color constancy.

1. We show that a diagonal matrix is able to correct scene
colors for certain illuminations (including daylight) well
enough to define the ground truth colors for the other illu-
minations.
2. Based on the findings in 1, we describe a robust method
to select the images in the existing color constancy datasets
to provide the ground truth colors for the imaged rendition
chart. This allows us to re-purpose datasets used for illu-
mination estimation, to also be used for color correction by
estimating a full 3×3 color correction matrices for all the
images in the dataset.
3. Using the re-purposed datasets from 2, we demonstrate
how these full matrices can be immediately used to modify
existing color constancy algorithms to produce better color
correction results.
4. Finally, we found that existing datasets have a strong
bias of images captured in daylight scenes. To create a
more uniformly sampled dataset for studying color con-
stancy correction, we have captured an additional 944 im-
ages under indoor illuminations to expand the NUS multi-
camera dataset.

We believe this work will have significant implications for
improving color constancy by allowing the evaluation of
color correction algorithms beyond white correction.

2. Related Work
There is a large body of work targeting color constancy,

with the vast majority focused on illumination estimation.
Representative examples include statistical methods that
directly estimate the illumination from an input image’s
RGB values (e.g. [5, 6, 18, 26, 34, 35]) and learning-
based methods that use various features extracted from
datasets with ground truth illumination to learn an estima-
tor (e.g. [7, 10, 14, 17, 20, 24, 31, 33]). A full discussion of
these methods is outside the scope of this paper, however,
more details can be found in the comprehensive survey by
Gijsenij et al. [25].

There is significantly less work focused on correcting
images. It is generally assumed that the three RGB channels
from the camera sensor act as independent gain controls to

scene illumination. This is similar to the von Kries hypoth-
esis [36] on human retinal cones. Working from the von
Kries assumption, a diagonal 3×3 matrix can be used to cor-
rect the three RGB channels by normalizing their individual
channel bias. This has long been known to be incorrect [13],
but remains the de facto method for image correction.

Early work by Finlayson et al. [15, 16] proposed a
method to address this problem with what was termed the
generalized diagonal model. In their work, a 3×3 spec-
tral sharpening matrix transform, M, was computed to map
the sensor’s RGB values to an intermediate color space,
for which the diagonal correction model works well. Fin-
layson et al. [16] showed that a two-dimensional linear
space of illuminants and a three-dimensional linear space
of reflectances (or vice versa) were sufficient to guarantee
the generalized diagonal model. Estimating M, however,
requires accurate camera responses of known materials un-
der controlled illumination. To achieve this, the camera
responses are simulated from spectral data of illumination
and reflectance using camera sensitivity functions. Chong et
al. [11] later revealed that the generalized diagonal compat-
ibility conditions are impositions only on the sensor mea-
surements, not the physical spectra. They formulated the
problem as a rank constraint on an order three measurement
tensor to compute the matrix M. Once again, Chong et
al. [11] require that the spectral sensitivity of the camera’s
sensor to be known. The use of this spectral sharpening ma-
trix M effectively meant the color correction transform was
a full 3×3 matrix.

Work in [23, 27] examined the dimensionality of the 9-
parameter space of the full 3×3 color correction matrices.
Using PCA decomposition, they found that only 3 bases
were required to recover the 9 parameters in the full ma-
trix model. The full matrices used in their PCA decompo-
sition were synthetically generated using a known camera
sensitivity function and a large database of material spectral
reflectances and illumination spectra.

While these methods helped to lay the foundation on
how to estimate full 3×3 color correction matrices, the
reliance on spectral information makes them impractical.
Bianco and Schettini [3] proposed a method to estimate the
sharpening matrix without spectral data in an optimization
framework that simultaneously estimated the color mapping
matrix to a device independent color space. The accuracy
of this approach with respect to the camera sensor’s color
space, however, is unclear.

In the following section, we describe how to estimate the
ground truth colors in the camera sensor space directly from
camera images.

3. Diagonal Model For Ground Truth Colors
This section performs an analysis which reveals that for

certain illuminations, the 3×3 diagonal correction model is
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Figure 2. (A) Illustration of the difference between the diagonal white-balancing correction and the full matrix image correction transform.
White-balancing only requires the observations of the neutral colors. To estimate the full matrix, the observed color chart and its ideal
colors are needed. (B) Shows the residual error comparison of the two different correction models. While the full matrix has consistently
lower error, for certain illuminations the error from the diagonal model is close to that from the full matrix. A heatmap visualization of the
diagonal matrix errors for each color patch is shown for three illuminates. The chromaticity position of the illuminations with respect to
the Plankian color temperature curve and their corresponding correlated color temperature (CCT) are also shown.

useful for full color correction of the scene, and not just
neutral colors. This analysis is performed empirically in
Sec. 3.1 working from spectral data. Sec. 3.2 shows our
mathematical model of the color constancy problem that
lends corroborative evidence to our empirical observation.

3.1. Empirical Analysis

Here we show empirically that 3×3 diagonal correction
matrices are sufficient to correct the scene’s colors for cer-
tain illuminations as well as full matrix correction can. Our
analysis starts by examining how RGB camera values are
formed in the spectral domain. Let C represent the cam-
era’s sensitivity functions that is written as a 3×N matrix,
where N is the number of spectral samples and the rows
of C = [cR; cG; cB] correspond to the R, G, B channels.
The camera response for a particular scene material, r un-
der illumination l can be obtained by the Lambertian model
where the specular reflection is ignored:

ρ = C · diag(l) · r = C · L · r, (1)

where l and r are N × 1 vectors representing the illumina-
tion spectra and material spectral reflectance respectively,
and diag(·) indicates the operator that creates a diagonal
matrix from a vector, i.e. L is an N × N illumination
matrix with diagonal elements l.

The goal of color constancy is to map an RGB value
taken under an unknown illumination, ρI = C · LI · r,
to its corresponding color under a canonical illumination,
ρC = C · LC · r. Although the canonical illumination can
be any specific spectra, ideal white light that has equal en-
ergy for every wavelength (i.e., the CIE standard illuminant
E) is generally chosen. In such a case, LC becomes the
identity matrix, I, and gives us ρC = C · r. This mapping
can be written as:

ρC = T · ρI ,

C · r = T ·C · LI · r,
(2)
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Figure 3. Spectra (400-720nm) for illuminations on which diago-
nal white-balancing correction works well. The bottom blue curve
corresponds to the blue curve of the diagonal correction error in
Fig. 2 (B) for illuminations index around 20-60. The correlated
color temperate (CCT) is also shown. These spectra are indicative
of broadband sunlight/daylight illumination.

where T is a 3 × 3 linear matrix that maps ρI to ρC . In
general, we have a scene composed of many different ma-
terials, and not just one. In this case, if we assume that the
scene is illuminated by a single illumination, we have:

C ·R = T ·C · LI ·R, (3)

where R is a matrix of many material reflectances (see
Fig. 2 (A)). Due to the metameric nature of Eq.3 an ex-
act solution for T is not possible [21, 30, 37]. We therefore
seek a transform T+ that minimizes the Frobenius norm:

T+ = argmin
T

||C ·R− T ·C · LI ·R||2F , (4)

where || · ||2F indicates the matrix Frobenius norm. A so-
lution to this optimization problem can be obtained using
the Moore-Penrose pseudoinverse. Note that, to solve this
problem, we need observations of the ideal (ground truth)
colors, C ·R, and the input image under the scene illumi-
nation, C · LI ·R.
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Figure 4. The trend of off-diagonal-to-diagonal ratio of T ∗ and T+ for all the illuminations and their correlation. Plots from two specifc
cameras are shown here, but all the other cameras share this similar trend: for certain illuminations, the off-diagonal-to-diagonal ratio is
low and high correlation can be found from the ratios of two different matrices (correlation coefficients are shown under the camera name).

Let’s now consider computing a diagonal, 3×3 correc-
tion matrix, Dw, as done by most white-balancing meth-
ods. We assume our camera has observed a special neutral
r that reflects spectral energy at every wavelength equally.
This means our camera response is the direct response of
the illumination lI , thus giving us:

Dw = diag(C · lI)−1, (5)

where lI is the input illumination (i.e., LI = diag(lI)).
This only requires the observation of the neutral patches.
Fig. 2 (A) illustrates the difference between these methods.

The residual errors for the two solutions over all ob-
served scene materials R can be expressed as the Frobenius
norms:

ErrT+ = ||C ·R− T+ ·C · LI ·R||2F
ErrDw = ||C ·R−Dw ·C · LI ·R||2F .

(6)

The question we are interested in is: When doesDw pro-
vides a good approximation to T+? To determine this, we
compute the residual errors in Eq. 6 for 28 different cam-
eras using the camera sensitivity functions from [28]. We
examined these errors for 101 different real world illumina-
tions captured by [1]. The reflectance materials used were
those estimated from the 24 color patches on the Macbeth
ColorChecker.

Fig. 2 (B) shows a plot of the residual errors for both T+

and Dw from two specific cameras (different C in Equa-
tion 6). The horizontal axis is the index of the 101 illumi-
nants. We sort the illuminations by their correlated color
temperature in the CIE-xy chromaticity space. We can see
that for many illuminations, the errors of these two methods
are similar. In particular, for illuminations close to range
6000K, the diagonal Dw is very close to the full matrix
T+. Fig. 3 shows several of the illumination spectra in this
range. We note that these spectra resemble those caused by
sunlight, including direct daylight and shadows. For other
illuminations, especially indoor artificial ones, the correc-
tion error from Dw is much larger than that from T+.

Another useful interpretation of this observation is to ex-
amine under what illuminations T+ becomes more like a

diagonal matrix. For this, we can define the off-diagonal-
to-diagonal ratio κ of matrix T+ as:

κ =

∑3
i=1

∑3
j=1,j 6=i |ti,j |∑3

i=1 |ti,i|
, (7)

where ti,j is the (i, j) element of matrix T and | · | indicates
the absolute value. On careful inspection of Eq. 7, we see
that κ decreases in value as the diagonal entries in the T
matrix become more dominant than the off-diagonal entries
of T . When κ = 0 the matrix T is a diagonal matrix. Fig. 4
plots κ+ for T+ against the 101 illuminations for two dif-
ferent cameras, Canon 1D Mark III and Nikon D700. The
trend of κ+ closely follows the observation of the residual
errors from diagonal white-balancing correction, ErrDw .

3.2. Mathematical Support for Our Observation

To have further support for this finding, we performed
another analysis that does not rely on the scene reflectance
R. This can be considered as estimating a full matrix that
is optimal over all possible reflectance values. In this case,
we drop R from Eq. 3 to obtain:

C = T ·C · LI . (8)

Similar to Eq. 4, the optimal linear transform T ∗ is the one
that minimizes the Frobenius norm of the difference:

T ∗ = argmin
T

||C− T ·C · LI ||2F , (9)

and it can also be computed directly from the Moore-
Penrose pseudoinverse:

T ∗ = C · LI ·Ct · (C · LI · LI ·Ct)−1. (10)

Using this T ∗ that does not rely on any reflectance ma-
terials, we plot its corresponding κ∗ against the plot for the
κ+ in Fig. 4. We can see that the two plots are highly cor-
related, providing corroborative evidence to our empirical
observation. The overall relationship of T ∗ to the illumina-
tion, L, and camera sensitivities, C, is complex given the
number of parameters involved. For the purpose of estab-
lishing ground truth colors in existing datasets, we will rely
on the use of images captured in daylight illumination as
indicated by the experiments in this Section.
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Figure 5. Procedure to calculate the “ground truth” RGB colors for the color chart patches. First, an outdoor image captured under
sunlight is manually selected. A kernel density estimation (KDE) method is applied on nearby ground truth illuminations to refine the
illumination chromaticity as the peak location of the local illumination chromaticity distribution. Images with illuminations close to this
refined reference illumination are selected automatically. Each image in this reference image set is corrected using the diagonal model and
each color patch is extracted. KDE is applied to each color patch’s corrected colors over the entire set and the KDE peak is selected as the
ground truth color.

4. Re-purposing Datasets
Existing color constancy datasets with full color ren-

dition charts in the scene are currently only used for the
purpose of illuminant estimation evaluation with the achro-
matic patches. This is because the ground truth colors of
the color patches in the camera’s color space are not known.
The findings in Sec. 3, however, tell use that under certain
illumination the standard diagonal correction matrix is able
to correct the scene colors, thus providing a very good ap-
proximation of the ground truth colors of the color chart. In
this section, we describe how to use the color chart RGB
values to re-purpose existing datasets, namely the Gelher-
Shi and the NUS datasets, so that they can also be used for
the purpose of color correction estimation. We also discuss
an appropriate error metric for evaluating color correction
as well as our need to augment datasets to have a better bal-
ance of indoor and outdoor images.

4.1. Robust Estimation of Patch Colors

The Gelher-Shi and NUS datasets have color rendition
charts in every scene. This means there are 24 common
materials present in all the images. Here, we describe how
to compute the ground truth values of these 24 color patches
in the camera sensor’s color space.

While we could use a single image captured under day-
light to provide the reference colors of the rendition chart,
this naive approach risks selecting an image that may pos-
sibly be corrupt by factors such as nonuniform illumination
and camera noise. Instead, we have devised a robust proce-
dure for selecting the colors. An overview of this procedure
is provided in Fig.5. We start with the entire dataset of the
images captured from the same camera under different illu-
minations. The ground truth illuminations for these images

are available from the chart’s neutral patches. We manu-
ally select an image that is clearly captured in daytime. We
then look for a set of images that have similar ground truth
illuminations. This is done by performing a 2D kernel den-
sity estimation (KDE) [4] on the chromaticity distribution
of the ground truth illuminations. We find the peak of the
KDE closest to our manually selected image. We then take
dataset images whose ground truth illumination chromatic-
ity distance to this KDE peak are smaller than a threshold to
form our reference image set. For each image in this refer-
ence image set, we correct the image using the diagonal cor-
rection matrix based on its ground truth illumination. Note
from Fig. 5 that this reference image set may contain a few
images which are not outdoor sunlight images. To prevent
our ground truth colors from being contaminated by these
outliers, we again apply KDE on the corrected chromaticity
for each patch and select the peak of the distribution as the
ground truth color for each patch. This procedure provides
a robust mechanism for finding the ground truth colors for
all the patches. When we applied this on the Gehler-Shi
dataset (Canon 5D subset), any manually-chosen reference
image that was captured in direct sunlight resulted in nearly
identical ground truth estimations.

After obtaining the ground truth checker chart colors, we
can now compute full matrices to transform all the images
in the dataset based on the color checker colors. This can
be done using the Moore-Penrose pseudo-inverse similar to
Eq. 4. However, as noted by Funt et al. [22], the illumi-
nation across the color rendition chart is generally not uni-
form. As a result, we follow the approach in [22] to mini-
mize the sum of angular error:

T = argmin
T

24∑
i=1

cos−1

(
TρI

i · ρC
i∥∥TρI

i

∥∥ ∥∥ρC
i

∥∥
)
, (11)
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Figure 6. This figure shows the ability of the full matrix to produce better image correction. (A) shows the distribution (modeled by
Gaussians) of each color patch in the color checker chart in the entire Gelher-Shi Canon1D dataset after correction using the proposed
full matrix and the diagonal matrix. The full matrix correction clearly decreases the variance in the color distributions after correction.
(B) shows images (from both Gelher-Shi and NUS datasets) corrected using a diagonal matrix (top) and a full matrix (bottom). The color
coded reproduction angular errors for each 24 color patches are also shown (red=high error, blue=low error).

where ρI
i is the patch color in this input camera image for

patch i and ρC
i is the estimated ground truth color for patch

i. Fig. 6 (A) shows the ability of the T estimated for each
image to provide a better mapping than the traditional di-
agonal correction. The two plots in Fig. 6 (A) show the
distribution of corrected colors of the color patch using the
full matrix T and the diagonal matrix. The colors are much
more coherent across the entire Gelher-Shi dataset. Fig. 6
(B) shows comparisons of four images selected from the
datasets. This is accompanied with a per patch error map
which is shown through this paper. The metric used to mea-
sure error is described next.

4.2. Correction Error Metric

For illumination estimation, the most common error met-
ric is known as the recovery error, and is computed as the
angular error between the estimated illumination and the
ground truth illumination in the camera’s color space. This
is shown in Fig. 7 (A). Note that this can be estimated with-
out correcting the image.

As we are interested in correcting the image, the angular
error is computed after correction. This can be defined as:

Erri = cos−1

(
ρT
i · ρC

i∥∥ρT
i

∥∥∥∥ρC
i

∥∥
)

i = 1..24, (12)

where Erri is the angular error for patch i and ρT
i is the

color of each patch after correction. Fig. 7 (B)-(C) demon-
strates the difference for the neutral color and color patch
colors respectively. Interestingly, this approach (termed the
reproduction error) was recently advocated by Finlayson
and Zakizadeh [19] for illumination estimation as an im-
proved metric. We adopt it here for estimating all the patch
colors in the rendition chart.
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Recovery angular error 
(neutral)

Reproduction angular error 
(neutral)

Ideal white [1,1,1]

𝒆𝑔𝑡

𝒆𝑒𝑠𝑡

Corrected 
white

Ground truth color

Corrected color

Reproduction angular error
(colors)

Pre-correction color space Corrected color space Corrected color space

Ground truth 

A B C

Figure 7. Illustration of recovery angular error (A) and reproduc-
tion angular error for neutral (B) and reproduction angular error
for non-neutral color (C). Dotted lines represent ground truth col-
ors; solid lines represent estimated or corrected colors.

4.3. Expanding the NUS Dataset

Our analysis of existing illumination correction datasets
found that they have significantly more outdoor images
where the diagonal matrix works well, than illuminations
such as indoor lighting, for which the full matrix is needed
for correction. To address this, we have captured additional
944 images to expand the NUS dataset [9]. We use the
NUS dataset because it is the newest dataset and has signif-
icantly more cameras (e.g. the Gelher-Shi dataset only has
two cameras). Using the same cameras used in [9], we cap-
tured 18 scenes under 6 different indoor illuminations using
each camera. Fig. 8 shows some of the example images.
These additional images make the distribution of different
illuminations much more uniform.

5. Application to Color Constancy
Here we describe how the re-purposed datasets described

in Sec. 3 can be immediately used to improve existing meth-
ods. In particular, we show how to modify two specific
learning-based methods, the Bayesian method [24, 31] and
the Corrected-Moments method [14] to use the full color
matrix. To give an insight into the potential of our newly



Figure 8. Examples of our newly captured indoor images. Similar
to the SFU laboratory image set, for each scene, we capture images
under multiple lighting conditions with a Macbeth Color rendition
chart in the scene.

computed datasets, we have also implemented an oracle
prediction method that is used to test our idea beyond the
limit of current illumination estimation performance.
Bayesian method The work by Gehler et al. [24] revisited
the original Bayesian color constancy method from [31].
The approach begins by correcting all the images in the
training set with diagonal white-balancing matrices based
on the ground truth illumination color. This is used
to build a likelihood probability distribution of the cor-
rected/reflectance colors. Then the prior information of di-
agonal correction matrices is used to help predict the most
possible illumination in the scene within a Bayesian infer-
ence framework. We modified this approach by changing
the image correction model, as well as the prior informa-
tion, to be the full matrix correction model. This will effec-
tively output a full matrix transform T by searching for the
MAP (maximum a posteriori) of the posterior probability
for T :

p(T |ρI) ∝ p(ρI |T )p(T ). (13)

Corrected-Moments We can also extend a recent method
proposed by Finlayson [14] that does not assume any ex-
plicit image correction model. This method only requires
the original (pre-corrected) input image color/edge mo-
ments, denoted by pm comprising of m moments. In the
training stage, a regression matrix Cm×3 is learned to map
the moments to the final illumination estimation:

eest = pmCm×3. (14)

We followed this procedure to estimate the illumination, but
replaced the image correction step to use the 3×3 full ma-
trix associated with the image in training-set whose ground
truth illumination is closest to eest.
Oracle prediction The use of the Baysesian and Corrected-
Moments are intended to show how the new full color
datasets can be immediately used to improve color correc-
tion based on the existing illumination estimation methods.

We expect, however, continuous improvements in illumina-
tion estimation and hope that our datasets will be useful in
this effort. We show results using what we term the “ora-
cle method” that assumes an ideal illumination estimation
method that can select the image in the training set with the
closest illumination in the ground truth dataset to an input
test image. We use this oracle method to help reveal the full
potential of better color image correction.

Table 1 lists all the results for these three comparison set-
tings using the reproduction error described in Section 4.2.
To maximize the performance of the learning-based meth-
ods, the results were obtained using a leave-one-out cross
validation as performed in [2]. Results are reported on out-
door, indoor, and all the images. For outdoor images, our
results are comparable to the existing methods. This is not
surprising as Sec. 3 indicates that the current diagonal cor-
rection method works well for outdoor images. In addition,
since our method attempts to minimize the error across all
the color patches and not just neutral, our results on the
neutral only patches are not always as good as the diag-
onal method. However, for indoor illuminations we see
significant gains. These gains are more noticeable in the
augmented NUS dataset that has a better balance between
indoor and outdoor images. Moreover, for the oracle pre-
diction, the full matrix correction wins every camera in the
“Color” and “All” categories, which indicates the possible
color constancy improvements with better illumination esti-
mation methods in the future. Fig. 9 shows a few examples
of subjective comparisons from the Bayesian method.

6. Discussion and Summary
This paper describes how to obtain ground truth colors in

camera sensor color space for use in color constancy image
correction. To the best of our knowledge, this is the first
work to show how to estimate these colors directly from
camera images without the need for careful spectral cali-
bration of the camera and imaged materials. Our findings
have allowed us to re-purpose existing illumination estima-
tion datasets to be used for evaluating image correction. Our
results in Sec. 5 represent that for the first time full matri-
ces can be estimated and evaluated for these datasets. These
re-purposed datasets, along with the new indoor images de-
scribed in Sec. 4 will be made publicly available. Our mod-
ifications to existing algorithms have just scratched the sur-
face of the usefulness of these new datasets and we believe
this work will have significant implications to researchers
in this area who can finally move beyond white-balancing
and towards true color constancy.
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Outdoor images Indoor images All images
Neutral Color All Neutral Color All Neutral Color All
D T D T D T D T D T D T D T D T D T

Bayesian
Gehler-Shi Canon 1D (15/71) 5.53 6.25 3.76 4.32 4.20 4.80 6.16 6.55 5.91 5.85 5.97 6.03 6.05 6.50 5.54 5.58 5.66 5.81
Gehler-Shi Canon 5D (307/175) 3.31 3.20 2.96 2.75 3.04 2.86 7.56 7.00 6.45 6.15 6.73 6.36 4.85 4.58 4.22 3.98 4.38 4.13
NUS Canon 1Ds Mark III (197/167) 4.27 4.42 3.46 3.60 3.66 3.80 5.41 5.30 5.16 4.57 5.22 4.75 4.79 4.83 4.24 4.04 4.38 4.24
NUS Canon 600D (145/160) 5.05 4.79 4.36 3.98 4.53 4.18 4.39 4.69 4.63 4.16 4.57 4.29 4.70 4.74 4.50 4.08 4.55 4.24
NUS Fujifilm XM1 (144/157) 3.52 3.77 2.72 2.91 2.92 3.12 4.05 4.51 4.34 3.75 4.27 3.94 3.80 4.15 3.57 3.35 3.63 3.55
NUS Nikon D40 (80/141) 5.16 4.54 3.93 3.56 4.24 3.80 5.97 5.29 5.85 4.59 5.88 4.77 5.68 5.02 5.15 4.22 5.28 4.42
NUS Nikon D5200 (151/154) 5.07 5.29 3.89 3.99 4.18 4.31 5.06 5.43 4.89 4.33 4.93 4.61 5.06 5.36 4.39 4.16 4.56 4.46
NUS Olympus EPL-6 (153/160) 3.82 3.91 3.18 3.26 3.34 3.43 5.16 4.95 4.94 4.78 4.99 4.82 4.50 4.44 4.08 4.04 4.18 4.14
NUS Lumix DMC-GX1 (147/161) 5.19 5.23 3.97 3.86 4.28 4.21 4.91 5.49 5.17 4.65 5.10 4.86 5.04 5.36 4.60 4.28 4.71 4.55
NUS Samsung NX2000 (153/154) 4.89 5.15 3.79 4.00 4.06 4.29 5.28 5.44 5.21 4.61 5.22 4.81 5.09 5.29 4.50 4.31 4.65 4.55
NUS Sony STL-A57 (207/166) 4.22 4.16 3.71 3.62 3.84 3.76 5.60 5.04 5.09 4.21 5.22 4.42 4.83 4.55 4.32 3.89 4.45 4.05

Corrected-moment
Gehler-Shi Canon 1D (15/71) 3.11 3.12 2.05 2.23 2.32 2.46 3.20 3.36 4.12 3.60 3.89 3.54 3.19 3.32 3.76 3.36 3.62 3.35
Gehler-Shi Canon 5D (307/175) 2.37 2.39 2.11 2.17 2.17 2.22 5.15 5.12 4.77 4.34 4.87 4.53 3.38 3.38 3.08 2.95 3.15 3.06
NUS Canon 1Ds Mark III (197/167) 2.69 2.70 2.28 2.41 2.38 2.48 3.49 3.59 3.53 3.09 3.52 3.21 3.06 3.11 2.85 2.72 2.90 2.82
NUS Canon 600D (145/160) 2.29 2.29 2.14 2.03 2.18 2.10 2.79 3.12 3.05 2.72 2.99 2.82 2.55 2.72 2.62 2.39 2.60 2.48
NUS Fujifilm XM1 (144/157) 2.59 2.55 2.08 2.10 2.21 2.21 3.54 3.68 3.87 3.08 3.79 3.23 3.09 3.14 3.01 2.61 3.03 2.74
NUS Nikon D40 (80/141) 3.18 3.21 2.19 2.37 2.44 2.58 3.49 3.30 3.77 3.01 3.70 3.08 3.38 3.26 3.20 2.78 3.24 2.90
NUS Nikon D5200 (151/154) 2.77 2.84 2.26 2.24 2.39 2.39 3.29 3.34 3.62 3.10 3.54 3.16 3.04 3.09 2.95 2.67 2.97 2.78
NUS Olympus EPL-6 (153/160) 2.21 2.30 1.98 1.93 2.04 2.02 3.33 3.44 3.66 3.12 3.58 3.20 2.79 2.88 2.84 2.54 2.83 2.62
NUS Lumix DMC-GX1 (147/161) 2.50 2.54 1.89 1.87 2.04 2.04 2.95 3.11 3.68 2.87 3.50 2.93 2.73 2.84 2.83 2.39 2.80 2.50
NUS Samsung NX2000 (153/154) 2.66 2.75 2.26 2.13 2.36 2.28 3.18 3.15 3.67 2.88 3.55 2.94 2.92 2.95 2.97 2.50 2.95 2.61
NUS Sony STL-A57 (207/166) 2.72 2.50 2.65 2.37 2.67 2.40 3.69 3.59 3.46 3.02 3.52 3.16 3.15 2.98 3.01 2.66 3.05 2.74

Oracle prediction
Gehler-Shi Canon 1D (15/71) 2.16 1.74 1.41 1.03 1.58 1.18 1.45 1.68 3.23 1.88 2.84 1.84 1.57 1.69 2.91 1.73 2.62 1.72
Gehler-Shi Canon 5D (307/175) 0.42 0.49 0.98 0.60 0.86 0.57 1.04 1.19 2.72 1.65 2.35 1.55 0.64 0.74 1.61 0.98 1.40 0.93
NUS Canon 1Ds Mark III (197/167) 0.54 0.55 0.90 0.59 0.82 0.58 0.90 0.89 2.48 1.12 2.14 1.07 0.71 0.70 1.62 0.83 1.43 0.80
NUS Canon 600D (145/160) 0.57 0.59 1.24 0.64 1.09 0.63 0.66 0.76 2.18 1.06 1.85 0.99 0.61 0.68 1.73 0.86 1.49 0.82
NUS Fujifilm XM1 (144/157) 0.72 0.67 1.02 0.61 0.95 0.62 0.82 0.97 2.64 1.10 2.24 1.07 0.77 0.83 1.86 0.87 1.62 0.86
NUS Nikon D40 (80/141) 1.61 1.58 1.21 0.96 1.29 1.09 1.06 1.05 2.67 1.16 2.32 1.13 1.26 1.24 2.14 1.09 1.95 1.12
NUS Nikon D5200 (151/154) 0.67 0.70 0.96 0.70 0.89 0.70 0.87 0.98 2.43 1.13 2.09 1.09 0.77 0.84 1.70 0.92 1.50 0.90
NUS Olympus EPL-6 (153/160) 0.49 0.50 0.82 0.54 0.75 0.53 1.13 1.28 2.67 1.28 2.34 1.28 0.82 0.90 1.77 0.92 1.56 0.91
NUS Lumix DMC-GX1 (147/161) 1.32 1.10 1.14 0.70 1.18 0.79 1.17 1.05 2.95 1.09 2.57 1.08 1.24 1.07 2.09 0.91 1.90 0.94
NUS Samsung NX2000 (153/154) 1.16 0.95 1.14 0.73 1.14 0.78 1.11 1.08 2.61 1.25 2.28 1.21 1.13 1.01 1.88 0.99 1.72 1.00
NUS Sony STL-A57 (207/166) 0.67 0.75 1.54 0.76 1.35 0.76 0.84 0.82 2.28 1.11 1.97 1.05 0.74 0.78 1.87 0.92 1.62 0.89

Table 1. Mean reproduction angular error for different methods with the diagonal correction (indicated as D) and the full matrix correction
(indicated as T ). Results are summarized for outdoor, indoor and all images. The numbers of outdoor images and indoor images for each
camera set are shown after the camera’s name. For each category, results are summarized for neutral patches, color (non-neutral) patches
and all patches. For each category (e.g. Indoor Images/Color), the minimum error result for D versus T is in bold. The Gehler-Shi dataset
is divided into two subsets according to the camera used. For color patches only, our method is consistently better for all indoor image and
combined image datasets (highlighted by the red background color), with the exception of the Canon 1D images in the Gehler-Shi, which
represents the smallest dataset tested.

Figure 9. Visual comparison of Bayesian method results (from both Gelher-Shi and NUS datasets). The first row shows the result from
the diagonal model and the second row shows the results from the modified Bayesian method with full matrix model. The color coded
reproduction angular errors for each 24 color patches are shown at the left-bottom of each image (red=high error, blue=low error).
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