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Color constancy is a well studied topic in color vision. Methods are generally categorized as: 1) low-level statistical methods;
2) gamut-based methods; 3) and learning-based methods. In this work, we distinguish methods depending on whether they
work directly from color values (i.e. color domain) or from values obtained from the image’s spatial information (e.g. image
gradients/frequencies). We show that spatial information does not provide any additional information that cannot be obtained
directly from the color distributions and that the indirect aim of spatial domain methods is to obtain large color differences for
estimating the illumination direction. This finding allows us to develop a simple and efficient illumination estimation method
that chooses bright and dark pixels using a projection distance in the color distribution and then applies PCA to estimate the
illumination direction. Our method gives state-of-the-art results on existing public color constancy data sets as well as on our
newly collected data set containing 1736 images from 8 different high-end consumer cameras.
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1. Introduction and related work
An image captured by a camera is an integrated signal result-
ing from the camera’s sensitivity of the spectral scene con-
tent and scene illumination. Scene illumination can have a
notable effect on the overall RGB values of an image, intro-
ducing color casts that are perceptually undesirable and that
have adverse effects on subsequent processing such as object
recognition and tracking. The human visual system has an
innate ability to perceive colors under different illumination
in a constant manner [1–7]. This ability is aptly termed col-
or constancy. For cameras, however, color changes due to
illumination must be corrected in post-processing. The key
to camera-based color constancy methods is the estimation
of the color of the illumination in a scene which is typically
modeled as a direction in the camera’s RGB colorspace [8].
Based on the estimated illumination, the colorspace is trans-
formed such that the illumination direction lies along the
achromatic line in the color space (i.e. (R = G = B)). This
procedure, often called white-balancing, serves to normalize
the lighting condition to an ideal achromatic white light and is
a crucial component in consumer cameras and pre-processing
for many image processing tasks.

Research in color constancy has a long history spanning
several decades [1–3]. A full literature review is outside the
scope of this paper, however, extensive surveys can be found
here [9–11]. Work pre-dating digital cameras was related pri-
marily to color perception by the human vision system. With
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Fig. 1. In the spatial domain methods, gradients serve as a means of
computing color differences. Spatial gradients with strong respons-
es can be attributed to scene content whose color values are far apart
in the color domain as shown in this figure.

the rise of consumer digital cameras, research begun to focus
on efficient white-balancing methods that could be performed
onboard the camera (e.g. . [12–18]). From these efforts it
became widely accepted that a 3 × 3 diagonal matrix is suf-
ficient to perform white balancing [8] - the challenge lies in
estimating the illumination direction in the RGB colorspace
for a captured image.

Early work examined statistical properties of the RGB col-
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orspace (e.g. average RGB value, or max RGB value). These
statistics were assumed to provide insight to where the true
achromatic values in the scene were and thus insight into the
illuminant direction [2, 5, 19]. Statistical approaches are still
popular to date [20–23] given their efficiency. In addition to
examining the RGB colors directly, spatio-statistical methods
were developed (e.g. [3, 21, 24–29]) that used gradient and
frequency information (e.g. image derivatives, difference of
Gaussians, etc). These methods argued that the illuminant
information was correlated with the image’s spatial informa-
tion. Other methods also examined scene content looking
for physics-based insight to illumination, such as speculari-
ty/highlights [30–34], shadows [1], black-body radiation [35]
and inter-reflections [24].

Another popular approach was to consider the finite gamut
of the sensor and scenes appearance under different illumi-
nations [36, 37]. This approach later gave rise to machine-
learning based methods that use training images to determine
both color and spatio-statistic information to help estimate
the illuminant (e.g. [27, 28, 38–42]). These gamut-based and
learning-based methods often give better performance than s-
tatistical and spatio-statical methods, but require significantly
more computational power and are not well suited for real-
time use.

In this paper, we investigate why the spatial domain meth-
ods (i.e. spatio-statistical as well as learning based on spatial
information) work and what is their connection to the meth-
ods that work directly in the color domain. For this purpose,
the color constancy methods are categorized by the type of in-
formation they use to estimate illumination, i.e.: (1) methods
based on color distribution [2, 20, 22] (2) methods based on
spatial information such as image gradients or other spatial
differences [21, 25–29].

While the spatial information is known to be important for
color constancy in human vision [3], it is intriguing to consid-
er why spatial derivatives might give insight to the scene illu-
mination direction for computational color constancy. While
spatial-domain methods clearly show a correlation between
spatial changes and illumination direction, the underpinning
reason is not clear. Spatial derivatives and their variation-
s (e.g. examining various spatial frequencies) are related to
scene albedo change from surface texture and depth discon-
tinuities. More importantly, they are dependent on the spa-
tial relationship of objects in the scene. This makes such ap-
proaches sensitive to the scene content. Yet, these methods
have seen reasonably good success.

From our analysis, we find that the spatial information
serves merely as a means of obtaining samples of color d-
ifferences in the color domain, and, that the majority of the
spatial information is not useful. More specifically, spatial
domain methods benefit from the large gradients in the scene
which correspond to differences from colors far apart in the
color domain (see Fig. 1). This observations lead us to ques-
tion whether computing this information directly from the
color domain might be a better strategy than relying on s-
patial content. To this end, we introduce a novel illumina-
tion estimation method that works from the color domain
and selects pixels that describe the illumination well. Our

method is simple, efficient, and gives state-of-the-result re-
sults. Lastly, as a part of our work, we have produced an
image data set of eight current consumer cameras with over
1600 high-quality images where each camera is observing
the same scene (see http://www.comp.nus.edu.sg/
˜whitebal/illuminant/illuminant.html. This
serves as a useful data set for color constancy research.

The rest of this paper is as follows. Section 2 gives more
background on color domain and spatial-domain methods.
Section 3 provides analysis into why spatial methods work.
Section 4 presents our methods followed by results and a dis-
cussion in Sections 5 and 7. Our dataset is discussed in Sec-
tion 6.

2. Color and spatial domain methods
We discuss color domain and spatial domain methods here.
Given the long history of color constancy research, only
representative examples are discussed. As previously men-
tioned, we categorize the approaches based on the infor-
mation used to estimate the illumination, i.e. RGB val-
ues (i.e. color domain) or spatial information. Let an
image I be denoted as a collection of vectors I(x) =
[IR(x) IG(x) IB(x)], where x indicates the pixels (or
corresponding color points in the color domain) and Ic(x)
denotes the color value of c = R,G,B color channels.
Color domain approaches Among the methods based on the
color domain distribution, the most popular methods are the
max-RGB [19, 22] and grey world method [2], along with
their variants such as those employing p-norm averages [20].
All these methods are based on statistical hypotheses about
the spectral properties of the scene. For example, the Grey
world method [2] and variants assume that the average of
a particular Minkowsky norm of a scene’s RGB values is
achromatic (in other words a constant for all the three col-
or channels). Thus, performing such a norm average on the
color data of an image will estimate the illumination direc-
tion. Mathematically, for such approaches, the color con-
stancy matrix T = diag(T )−1 is given by the illumination
direction T = [tR tG tB] which is estimated as:

tc =
(
∑

x |Ic(x)|
p
)

1
p

N
, (1)

where |◦| denotes the absolute value and N is the number
of pixels in the image. The max-RGB method is also a
subset of this since it considers (p = ∞) Minkowsky norm.
Here, we note that the average is typically taken on all the
pixels (after possibly removing the pixels corresponding to
the saturation and dark noise). This is a general approach.
However, more specific choice of pixels is also considered at
times. For example, pixels corresponding to specularity only
may be chosen [31].

Spatial domain methods In the spatial domain methods, a
spatial domain operator f(I) is applied on the image I to
obtain a transformed image J :

J(x) = f(I(x)),∀x (2)

http://www.comp.nus.edu.sg/~whitebal/illuminant/illuminant.html
http://www.comp.nus.edu.sg/~whitebal/illuminant/illuminant.html
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Fig. 2. This figure shows an example images from [40] where synthetic gradients are introduced by shuffling the image by blocks (top
row). Note that the scene content and overall color distribution does not change. The gradients of these images projected on different color
planes show that introduction of new gradients makes the distribution more elongated and directional. This shuffling actually improves the
illumination estimation for a well known spatial technique [21].
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Fig. 3. Probability map of the image(from [40]) gradients and the illumination information in the various regions of this map are shown. The
magenta lines show the PCA vector of the pixels inside the yellow box (i.e. illumination information in small gradients) and the green lines
show the PCA vector of the pixels outside the grey box (i.e. illumination information in large gradients). Black lines show the ground truth.

These methods operate directly in the transformed image
J . For example, the Grey edge [21, 28] hypothesizes that the
derivatives of an image in the spatial domain represent achro-
matic color. As with grey world, a pth Minkowsky norm can
be used as in eq. (1) to estimate the illumination direction
operating on the J instead of I .

An enhanced version of the grey edge method is the
weighted grey edge [25, 29] where the edges are classified
according to physical properties such as specularity, shadows,
etc. The operator f(I) can be represented as a weighted nth

order derivative:

J(x) = w(x)∇nI(x) (3)

where w(x) is the weight given to a pixel based on photomet-
ric classifications, such as discussed above.

Other spatial domain methods use operators such as Gaus-
sian filter, discrete cosine transform [27], discrete wavelet
transform [26] etc. The idea is to suppress/remove the s-
mooth portion of the data and keep only the spatial high fre-
quency components (equivalent to derivatives) in the image
[26].
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3. Why spatial domain methods work
As stated in Section 1, our focus is to investigate what
makes spatial domain methods work. Work in [39] provided
an earlier insight into this by considering the correlation
between all pixels in an image with one another. This work
argued that spatial domain methods can be thought of as
a subset of this exhaustive correlation approach, where
only correlation between local neighborhoods of pixels are
considered. Here, we provide a much more direct analysis to
give insight into why spatial domain methods work. We do
this using two experiments to help reveal the relationship of
the spatial information to image samples in color domain.

Introducing artificial gradients We first look at synthetical-
ly introducing gradients in an image by dividing the image in-
to uniform blocks and randomly shuffling the blocks to create
a new image. For this new image, neither the illumination,
color distribution, nor the net image content has changed.
This new image does have new image gradients due to the
boundaries created by the shuffled blocks, but these gradients
are artificial and do not represent anything physical about the
scene. Such manipulation will have no effect on color domain
approaches. However, for spatial domain approaches this has
a surprisingly positive effect on the illumination estimation.

Figure 2 shows two examples. The top row shows two
images divided into different number of blocks which have
been shuffled. The bottom rows shows the ground truth il-
lumination (the grey arrow) and plotted gradients against the
R-G and R-B planes. As the number of blocks increases,
the number of large gradients increases. These new gradi-
ents correspond to large color differences at the edges of the
blocks. More importantly, these new gradients are complete-
ly artificial and have no physical meaning. It is interesting to
see that these new large gradients also appear to be following
the direction of the illumination. The addition of these gradi-
ents improves the Grey Edge algorithm [21]. This is shown
by the angular error from the ground truth which decreases
as the shuffling increases. The angular error εangle(eest) of
the estimated illumination direction eest from the illumina-
tion direction of the ground truth egt is computed as follows:

εangle(eest) = cos−1

(
eest · egt
‖eest‖ ‖egt‖

)
. (4)

Gradient analysis Our second experiment examines how
gradients contribute to illumination estimation. It is well
known that natural images have significantly large number
of small valued gradients and a sparse number of large gradi-
ents [43]. This means that we should expect the majority of
the gradients obtained for spatial methods to be small valued.
This is shown in Fig.3 on two example images. The gradients
probability map shows the relative occurrence of a particular
gradient value. Here we have considered the horizontal spa-
tial derivative for simplicity; the vertical derivative shows a
similar trend.

The goal here is to investigate the contribution of low val-
ued gradients (i.e. the majority of the gradients) to the illumi-

nation estimation. For this we consider the gradients inside
the yellow boxes shown in Fig. 3. Using the pixels that lie
inside the yellow box only, we compute and plot the domi-
nant direction in this distribution using principal component
analysis (PCA). The result is shown in Fig. 3) using a ma-
genta colored line. The ground truth illuminant is shown as
a black line. Further, we consider if the large gradients are
helpful in illumination estimation. For this, we consider the
pixels outside the grey box and compute the PCA of the large
gradients in Fig. 3), which is shown using green colored line.

It can be seen that the illumination estimation for small
gradients (inside yellow box) have more angular deviation
from the ground truth than the pixels with higher gradients
(outside grey box). Thus, small gradients can actually bias
the solution in an erroneous manner. Thus, removing these
small gradients through heuristics is a way to improve the
performance of spatial methods. Such heuristics may involve
identification of the pixels lying along edges, specularities, or
shadows.

Both of these experiments serve to underscore that large
color differences are key to illumination estimation. More-
over, our first experiment shows that relying on the scene
content to provide these differences may not be the best s-
trategy. Simply by shuffling the image content to introduce
artificial gradients, we were able to obtain better results. This
begs the question if we can design a method to obtain sim-
ilar large color differences in the color domain directly and
bypass the reliance on the spatial content to give us these dif-
ferences.

4. Proposed method
Based on our findings in Section 3 we propose a new method
that selects colors in the color domain distribution that effec-
tively provide large differences. This is similar to examining
large gradients without the reliance on the scene content to
guide the selection of the colors. Our method is described in
the following.

4.A. Selection of colors
It was empirically shown for the gradient domain in [28] that
specular pixels and shadow pixels help in reducing the er-
ror of illumination estimation. Such observations were also
reported in [30–34]. It is interesting to note that the pixels
that lie on the edges of specular and shadow generally rep-
resent regions with notable color differences between them
in the color domain. In practice, however, selecting specular
and shadow pixels only from an image is not straight for-
ward. For example, we have to distinguish between specular-
ities and bright surfaces and shades and dull surfaces. Only
advanced image processing and the knowledge of scene and
camera’s spectral properties could give a good classification
for them.

In this sense, if we choose just the bright and dark pixels
in the image, we can have the clusters of points with largest
color differences between the clusters. Doing so has several
advantages. First, we are no more dependent on the scene’s
actual content and spatial correspondence for color estima-
tion. This is important because sometimes two images of d-
ifferent scenes may result in drastically different estimation
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Fig. 5. These images(from [40]) of different scenes are taken in
the same illumination, but the error in illumination estimation using
spatial domain methods is quite different for the two images. The
labels in the top corners of the images show the angular errors of the
grey edge (GE) and weighted grey edge (WGE) algorithm.

Fig. 6. Illustration of the projection distance used in eq. (5).

using spatial domain methods, see Fig. 5 for example. Sec-
ond, such approach does away with computationally involved
spatial domain processing such as filtering. Third, we do not
need to compute photometric pixels having qualities such as
specularity or shade. This is quite handy since either the clas-
sification of such pixels require sophisticated and advanced
processing or very crude approximations are used to classify
them with large error probability.

4.B. Our Algorithm
An illustration of the proposed method is shown in Fig. 4. We
first compute the projection of all the color points in the color
domain on the direction of the mean vector. The projected
distances be denoted as dx, where x is the index of a color
point. The term dx is a scalar distance given as:

dx =
I(x) · I0
‖I(x)‖‖I0‖

, (5)

where ‖A‖ denotes the Euclidean norm of a vector A, A · B
represents the vector dot product of the vectors A and B, and
the vector I0 is given as:

I0 = [tR tG tB] , (6)

where tc is given by eq. (1) with p = 1. Further, I(x) =
[IR(x) IG(x) IB(x)] is the vector containing the RGB
color values of a color point x. The projection distance is
illustrated in Fig. 6. We then sort the color points in the as-
cending order of the projection distances dx. Then we choose
the top n% and bottom n% of color points, thus selecting the
color points with largest and smallest projections on the mean
vector.

Then we compute the first PCA vector of the data matrix
formed using I(x) corresponding to the selected pixels only.
This vector is taken as the estimated illumination direction.
The effect of control parameter n on the performance of our
method is shown in Fig. 7 using the mean and median errors
for the Color Checker dataset [40]. It is seen that the median
error is the lowest at n = 3.5%. We note that while our
method is simple, our results show that it is quite effective in
estimating the illumination.

5. Results
We show our results on three data sets. The first is the well es-
tablished SFU data set [44] comprising of 321 images taken
in laboratory scenario with controlled scenes and illuminants.
The second is the more recent Color Checker dataset [40]
comprising of 568 images of natural scenarios with natural
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Fig. 7. Effect of the control parameter n on the performance of the
proposed method.

Projected 
distance

Projected 
distance

Fig. 8. Strongly axial color distribution causes failure for most
methods of color constancy. The black vectors in the bottom row
are the actual illumination vectors (i.e. ground truth).

scenes and illuminations. These two data sets are current-
ly the standards used when comparing color constancy algo-
rithms. We have also collected a new data set of 1736 images
taken from 8 different cameras. Additional 117 images from
Nikon D40 camera and its results for all the methods is made
available on our project website. The details of our dataset
are presented in section 6.

We compare our results against 14 existing techniques that
represent a wide range of color constancy techniques (see Ta-
bles 2 and 3). We have used angular error (eq. 4) as the error

B: 9.11 ° , BD: 1.29° B: 47.47°, BD: 4.52° B: 23.48°, BD: 0.35° 

B: 13.67°, BD: 6.23° B: 12.79°, BD: 2.63° B: 12.58°, BD: 0.96° 

Fig. 9. This figure shows some examples from the Color Checker
dataset [40] in which the error in illumination estimation is high
when only bright pixels (B) are used and reduces significantly when
both bright and dark (BD) pixels are used.

Method SoG GGW BP GE1 GE2 PG EG IG
Parameters p p, σ p,% p, σ p, σ σ σ σ

CC 4 9,9 2,2 1,6 1,1 4 4 9
SFU 7 10,5 2,0.5 7,4 7,5 4 2 4
Canon1 3 1,9 2,3 3,6 9,9 10 7 9
Canon2 3 3,9 4,3 9,3 3,3 8 10 9
Fuji 3 3,9 4,3 3,3 3,3 10 10 10
Nikon 3 3,9 4,3 3,3 9,3 8 3 8
Oly 9 1,1 2,3 3,1 3,1 9 10 9
Pan 9 1,1 1,5 1,1 3,1 10 10 10
Sam 9 1,1 4,3 1,1 9,3 10 4 10
Sony 3 1,9 2,3 9,9 3,3 7 8 7

Table 1. Control parameters used by various methods. Abbrevia-
tions of methods and datasets are the same as Table 2.

metric to evaluate the methods as it is most widely used in
evaluating color constancy algorithms [9] and is correlated to
the perceptual Euclidean distance [45]. The mean, median,
tri-mean, and maximum angular errors of most state of the art
methods and our method for various datasets are shown in Ta-
ble 2. The error for best 25% images and worst 25% images
are listed in Table 3. We have used n = 3.5% for generating
our results. The control parameters of the other methods are
shown in Table 1. The control parameters have been chosen
as recommended in the respective papers and the color con-
stancy website http://colorconstancy.com/. With
these guidelines, the control parameters producing optimal
results (minimum mean errors) were chosen for reporting the
results of other methods for our datasets. Results for SFU
dataset [44] and ColorChecker dataset [40] are reported as
reported in http://colorconstancy.com/. Results
of few methods for SFU and ColorChecker datasets are kept
blank as the data was not reported previously.

The training and test times for our Canon1 dataset are re-
ported in Table 4. All the results were generated on Intel Core
i5 @3.2GHz with 4GB RAM using Matlab 2010.

It is seen that our method performs reasonably well for all
the datasets in terms of the mean, median, tri-mean errors,
and errors for best 25 % images. Our method performs the
poorest on the SFU dataset. The reason for the poor per-
formance is discussed in the failure cases below. In all the
other datsets, the error metrics of our method compete well
against the other methods. Our method often has the least
error metric and in other cases error metric quite close to the
least value. Often, the methods that perform better than our
method for a given metric and dataset are based on machine
learning or gamut fitting (collectively called learning based
methods). Methods in both these classes use images in the
same dataset for 3-fold training and validation before test-
ing is done on the same images. The 3-fold learning is used
for maintaining consistency with previously reported results
on http://colorconstancy.com/. Thus, it is not too
surprising that error metrics of these methods are often quite
small. Nevertheless, it is not guaranteed that these methods
will always result in very small errors since their performance

http://colorconstancy.com/
http://colorconstancy.com/
http://colorconstancy.com/
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is quite sensitive to the choice of control parameter.
Training also imposes a high computational requiremen-

t on learning based methods, as is confirmed in the large
training times reported in Table 4. In addition, as noted in
Table 4, the test times are also large for such methods. On
the other hand, our method takes just a few minutes (includ-
ing image read time) for the 259 images of dataset Canon1.
Thus, it is seen that our method provides a good combina-
tion of accuracy and speed and does not need prior learning.
It has been observed that training and testing times increas-
es rapidly with the increase of the control parameters σ (most
learning methods require higher sigma to obtain better result-
s) and increase in size of the image in the dataset. Further, it
was noted in [46, 47] that an angular error of 3◦ is percep-
tually acceptable. As noted in our statistics for median and
tri-mean errors, the performance of our method is perceptu-
ally acceptable for most cases.

Failure cases It is well-known that if the scene is biased
to contain shades of only one or two colors, then the projec-
tion of the illuminated scene on the camera sensor is strongly
biased along one or two directions in the color domain. This
makes the illumination estimation to lie along either of these
direction or somewhere between them. Two such examples
from Color Checker dataset [40] are shown in Fig. 8. In such
cases, most methods that effectively use color domain statis-
tics (which includes spatial domain methods), including ours,
result in poor estimation of illumination. Most images in the
SFU dataset are illuminated using unusual red and blue illu-
minants. This gives a similar effect as having only one or two
colors in the scene and biases the color domain distribution
to lie along only one or two directions in the color domain.
As a result, many statistical methods, including ours, perform
poorly for the SFU dataset as can be observed in Table 2 and
Table 3.

Gamut mapping and machine learning methods are expect-
ed to perform better, since they do not use single image to
estimate the illumination and rather use pre-learnt priors. In-
deed this assumes that hopefully diverse set of images were
used for training such that large part of the color domain is
spanned by the training data and the test image is a subset of
the color domain portion used for training.

The role of dark pixels It might be argued that bright pix-
els may be sufficient for illumination estimation. In Fig. 9,
we show some examples in which bright pixels are not suf-
ficient for illumination estimation and using both bright and
dark pixels reduces the error significantly. In fact, for the 568
images in the Color Checker dataset [40], the illumination
estimation using bright and dark pixels (BD) is better than
using bright pixels (B) alone for 220 images.

6. Our Data set
We have captured a new image data set similar in nature
to the Color Checker dataset [40], however, with more im-
ages and up to date camera models. In addition, our dataset
has images of the same scene with the different cameras,
something not done in the previous methods and dataset-
s. This gives a way to compare the performance accross
different cameras on the same input. Our data set is com-
posed of images from 9 commercial cameras: Canon 1D-

Fig. 10. Examples of images in our dataset are shown here.

S Mark III (Canon1 in Table 2), Canon 600D (Canon 2
in Table 2), Fujifilm XM1 (Fuji in Table 2), Nikon D5200
(Nikon in Table 2), Olympus EPL6 (Oly in Table 2), Pana-
sonic GX1 (Pana in Table 2), Samsung NX 2000 (Sam in
Table 2)), and Sony α57 (Sony in Table 2). For these cam-
eras, we captured over 200 images each(Canon1(259 im-
ages), Canon2(200 images), Fuji(196 images), Nikon(200
images), Oly(208 images), Pana(203 images), Sam(203 im-
ages), and Sony(268 images)), such that the scene and illu-
mination is the same for all the 8 cameras. There are slight
misalignment issues because the camera positioning cannot
be exactly ensured, but these errors are small. The images
are taken in natural settings, both indoor and outdoor. For
outdoor, the sunny and shade conditions are considered. For
indoor, various common commercial lightings are consid-
ered (e.g. tungsten, florescent, etc). Example from the da-
ta set are shown in Fig. 10. Our complete dataset (around
100GB in compressed state) and our matlab source code are
all publicly available at http://www.comp.nus.edu.
sg/˜whitebal/illuminant/illuminant.html.

7. Discussion and Conclusion
We have observed that spatial and gradient domain methods
works because of color differences, which can be easily ob-
tained from color domain. We have also seen that not only the
bright pixels [31] are important for illumination estimation
but also the dark pixels are important for illumination esti-
mation. Our method based on bright and dark pixels chosen
using the projection distance in the color domain performs
better than most non-machine learning methods for natural
images across various consumer cameras. Though a com-
parison of non-learning based methods with learning based
methods is not completely fair, but for the sake of complete-
ness we have compared our method with both non-learning
based methods (GW [2], WP [19], SoG [20], GGW [11], BP

http://www.comp.nus.edu.sg/~whitebal/illuminant/illuminant.html
http://www.comp.nus.edu.sg/~whitebal/illuminant/illuminant.html
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Statistics based methods Learning based methods

Method Our GW WP SoG GGW BP GE1 GE2 PG EG IG BL ML GP NIS

Dataset Mean angular error (degrees ◦)

CC 3.52 6.36 7.55 4.93 4.66 − 5.33 5.13 4.20 6.52 4.20 4.82 3.67 3.59 4.19
SFU 6.07 9.78 9.09 6.39 5.41 − 5.58 5.19 3.70 3.92 3.62 − 5.63 − −
Canon1 2.93 5.16 7.99 3.81 3.16 3.37 3.45 3.47 6.13 6.07 6.37 3.58 3.58 3.21 4.18
Canon2 2.81 3.89 10.96 3.23 3.24 3.15 3.22 3.21 14.51 15.36 14.46 3.29 2.80 2.67 3.43
Fuji 3.15 4.16 10.20 3.56 3.42 3.48 3.13 3.12 8.59 7.76 6.80 3.98 3.12 2.99 4.05
Nikon 2.90 4.38 11.64 3.45 3.26 3.07 3.37 3.47 10.14 13.00 9.67 3.97 3.22 3.15 4.10
Oly 2.76 3.44 9.78 3.16 3.08 2.91 3.02 2.84 6.52 13.20 6.21 3.75 2.92 2.86 3.22
Pan 2.96 3.82 13.41 3.22 3.12 3.05 2.99 2.99 6.00 5.78 5.28 3.41 2.93 2.85 3.70
Sam 2.91 3.90 11.97 3.17 3.22 3.13 3.09 3.18 7.74 8.06 6.80 3.98 3.11 2.94 3.66
Sony 2.93 4.59 9.91 3.67 3.20 3.24 3.35 3.36 5.27 4.40 5.32 3.50 3.24 3.06 3.45

Dataset Median angular error (degrees ◦)

CC 2.14 6.28 5.68 4.01 3.48 − 4.52 4.44 2.33 5.04 2.39 3.46 2.96 2.96 3.13
SFU 3.01 7.00 6.48 3.74 3.32 − 3.18 2.74 2.27 2.28 2.09 − 3.45 − −
Canon1 2.01 4.15 6.19 2.73 2.35 2.45 2.48 2.44 4.30 4.68 4.72 2.80 2.80 2.67 3.04
Canon2 1.89 2.88 12.44 2.58 2.28 2.48 2.07 2.29 14.83 15.92 14.72 2.35 2.32 2.03 2.46
Fuji 2.15 3.30 10.59 2.81 2.60 2.67 1.99 2.00 8.87 8.02 5.90 3.20 2.70 2.45 2.95
Nikon 2.08 3.39 11.67 2.56 2.31 2.30 2.22 2.19 10.32 12.24 9.24 3.10 2.43 2.26 2.40
Oly 1.87 2.58 9.50 2.42 2.15 2.18 2.11 2.18 4.39 8.55 4.11 2.81 2.24 2.21 2.17
Pan 2.02 3.06 18.00 2.30 2.23 2.15 2.16 2.04 4.74 4.85 4.23 2.41 2.28 2.22 2.28
Sam 2.03 3.00 12.99 2.33 2.57 2.49 2.23 2.32 7.91 6.12 6.37 3.00 2.51 2.29 2.77
Sony 2.33 3.46 7.44 2.94 2.56 2.62 2.58 2.70 4.26 3.30 3.81 2.36 2.70 2.58 2.88

Dataset Tri-mean error (degrees ◦)

CC 2.47 6.28 6.35 4.23 3.81 − 4.73 4.62 2.91 5.43 2.93 3.88 3.10 3.04 3.45
SFU 3.69 7.60 7.45 4.59 3.78 − 3.74 3.25 2.53 2.70 2.38 − 4.33 − −
Canon1 2.22 4.46 6.98 3.06 2.50 2.67 2.74 2.70 4.81 4.87 5.13 2.97 2.97 2.79 3.30
Canon2 2.12 3.07 11.40 2.63 2.41 2.47 2.36 2.37 14.78 15.73 14.80 2.40 2.37 2.18 2.72
Fuji 2.41 3.40 10.25 2.93 2.72 2.82 2.26 2.27 8.64 7.70 6.19 3.33 2.69 2.55 3.06
Nikon 2.19 3.59 11.53 2.74 2.49 2.44 2.52 2.58 10.25 11.75 9.35 3.36 2.59 2.49 2.77
Oly 2.05 2.73 9.54 2.59 2.35 2.36 2.26 2.20 4.79 10.88 4.63 3.00 2.34 2.28 2.42
Pan 2.31 3.15 14.98 2.48 2.45 2.30 2.25 2.26 4.98 5.09 4.49 2.58 2.44 2.37 2.67
Sam 2.22 3.15 12.45 2.45 2.66 2.64 2.32 2.41 7.70 6.56 6.40 3.27 2.63 2.44 2.94
Sony 2.42 3.81 8.78 3.03 2.68 2.73 2.76 2.80 4.45 3.45 4.13 2.57 2.82 2.74 2.95

Dataset Maximum angular error (degrees ◦)

CC 28.35 24.83 40.58 22.40 22.04 − 26.35 23.88 23.18 28.99 24.22 24.48 21.58 21.64 26.20
SFU 44.00 37.31 36.22 29.60 28.93 − 31.55 26.74 27.10 27.70 27.10 − 21.56 − −
Canon1 16.20 22.37 39.12 15.74 16.72 18.87 17.69 15.73 29.09 33.59 28.96 13.54 13.54 16.62 21.43
Canon2 17.33 15.93 22.76 15.08 18.38 17.56 17.86 17.68 22.54 22.48 22.59 15.60 15.43 15.54 20.16
Fuji 21.16 21.06 25.10 18.55 20.83 21.45 22.79 24.44 21.73 21.89 19.68 18.32 18.75 15.07 28.54
Nikon 15.50 20.61 53.08 15.53 15.54 15.61 23.57 24.33 33.72 60.87 33.73 17.85 17.65 16.63 56.44
Oly 23.28 16.46 25.11 16.99 22.20 18.11 20.57 19.58 18.85 53.56 34.03 22.22 15.14 14.21 16.53
Pan 16.59 16.74 23.89 18.47 17.61 17.97 21.15 20.03 26.91 52.08 24.75 19.51 15.29 14.54 21.34
Sam 15.52 17.32 23.99 13.80 12.41 14.11 20.90 20.85 18.09 29.40 18.35 18.12 15.76 14.04 15.25
Sony 12.39 17.84 39.78 13.79 17.89 12.94 15.04 15.78 50.45 32.70 50.42 18.05 15.63 14.78 12.96

Table 2. Comparison of mean, median, tri-mean, and maximum angular errors of our method with other methods for various datasets is shown
here. Abbreviations of methods: Grey World [2] (GW), White Patch [19] (WP), Shades of Grey [20] (SoG), Generalized Grey World [11]
(GGW), Bright-Pixels [31] (BP), Grey Edge - 1st order [21] (GE1), Grey Edge - 2nd order [21] (GE2), Pixels based Gamut [36] (PG), Edge
based Gamut [36] (EG), Intersection based gamut [36] (IG), Bayesian learning [40] (BL), Spatio-spectral learning [27] (ML), Spatio-spectral
learning using Gen-prior [27] (GP), Natural Image Statistics [28] (NIS). Abbreviations of datasets: Color Checker Set of [40] (CC), SFU
laboratory dataset of [44].
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Statistics based methods Learning based methods

Method Our GW WP SoG GGW BP GE1 GE2 PG EG IG BL ML GP NIS

Dataset Error for best 25% images (degrees ◦)

CC 0.50 2.33 1.45 1.14 1.00 − 1.86 2.11 0.50 1.90 0.51 1.26 0.95 0.91 1.00
SFU 0.67 0.89 1.84 0.59 0.49 − 1.05 1.10 0.46 0.51 0.50 − 1.23 − −
Canon1 0.59 0.95 1.56 0.66 0.64 0.62 0.81 0.86 1.05 1.38 1.18 0.76 0.76 0.88 0.78
Canon2 0.55 0.83 2.03 0.64 0.63 0.67 0.73 0.80 9.98 11.23 10.02 0.69 0.72 0.68 0.78
Fuji 0.65 0.91 1.82 0.87 0.73 0.76 0.72 0.70 3.44 2.30 2.18 0.93 0.75 0.81 0.86
Nikon 0.56 0.92 1.77 0.72 0.63 0.59 0.79 0.73 4.35 3.92 4.05 0.92 0.91 0.86 0.74
Oly 0.55 0.85 1.65 0.76 0.72 0.63 0.65 0.71 1.42 1.55 1.38 0.91 0.86 0.78 0.76
Pan 0.67 0.82 2.25 0.78 0.70 0.66 0.56 0.61 2.06 1.76 1.54 0.68 0.84 0.82 0.79
Sam 0.66 0.81 2.59 0.78 0.77 0.81 0.71 0.74 2.65 3.00 2.25 0.93 0.80 0.75 0.75
Sony 0.78 1.16 1.44 0.98 0.85 0.81 0.79 0.89 1.28 0.99 1.11 0.78 0.93 0.87 0.83

Dataset Error for worst 25% images (degrees ◦)

CC 8.74 10.58 16.12 10.20 10.09 − 10.03 9.26 10.72 13.58 10.70 10.49 7.61 7.43 9.22
SFU 16.82 23.45 20.97 16.49 13.75 − 14.05 13.51 9.32 9.91 9.38 − 12.90 − −
Canon1 6.82 11.00 16.75 8.52 7.08 7.82 7.69 7.76 14.16 13.35 14.47 7.95 7.95 6.43 9.51
Canon2 6.50 8.53 18.75 7.06 7.58 7.22 7.48 7.41 18.45 18.66 18.29 7.93 5.99 5.77 7.76
Fuji 7.30 9.04 18.26 7.55 7.62 7.68 7.32 7.23 13.40 13.44 12.51 8.82 6.93 5.99 9.37
Nikon 6.73 9.69 21.89 7.69 7.53 7.01 8.42 8.21 15.93 24.33 16.18 8.18 6.88 6.90 10.01
Oly 6.31 7.41 18.58 6.78 6.69 6.30 6.88 6.47 15.42 30.21 14.41 8.19 6.09 6.14 7.46
Pan 6.66 8.45 20.40 7.12 6.86 6.95 7.03 6.86 12.19 11.38 10.70 8.00 6.07 5.90 8.74
Sam 6.48 8.51 20.23 6.92 6.85 6.57 7.00 7.23 13.01 16.27 11.98 8.62 6.46 6.22 8.16
Sony 6.13 9.85 21.27 7.75 6.68 6.78 7.18 7.14 11.16 9.83 11.93 8.02 6.55 6.17 7.18

Table 3. Comparison of best-25% and worst-25% of our method with other methods for various datasets is shown here.

Method Our GW WP SoG GGW BP GE1 GE2 PG EG IG BL ML GP NIS

Train(min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 254 245 251 32.2 133.2 126.9 453.2
Test(min) 9.9 7.8 8.0 14.6 27.3 13.6 29.5 34.6 254 184 235 2316 168.3 61.7 25.2

Table 4. Training and testing time (in minutes) for our Canon1DsMarkIII dataset (trends are similar for the other 8 cameras in our dataset).

[31], GE1 [21], GE2 [21]) as well as learning based methods
(PG [36], EG [36], IG [36], BL [40], ML [27], GP [27], NIS
[28]). Our method performs better than most non-learning
based methods and performs similar or close to the learn-
ing based methods in terms of several practically useful error
metrics. Further our method is computationally fast and prac-
tically more useful than the learning based methods.

We conclude with three highlights of our method. First,
instead of using statistical moments such as in eq. (1), we
use the first PCA vector for estimating the illumination direc-
tion that inherently considers the first and second order mo-
ments of the data. Second, instead of using intensity values
for determining bright and dark pixels, we use a projection
based distance measure to determine the bright and dark pix-
els. This allows the pixels to be ranked according to their
deviation from the statistical mean of the data. Third, un-
like other works such as [31], we consider the dark pixels as
well for illuminant estimation. Lastly, our dataset of the same
scene under same illumination for 8 cameras will be a useful
resource for future research in color constancy.
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