
Integrating Planning into Reactive High-Level Robot
Programs

Yves Lespérance and Ho-Kong Ng1

Abstract. IndiGolog is a high-level programming language for
robots and intelligent agents that supports on-line planning and plan
execution in dynamic and incompletely known environments. Pro-
grams may perform sensing actions that acquire information at run-
time and react to exogenous actions. In this paper, we show how
IndiGolog can be used to write robot control programs that com-
bine planning, sensing, and reactivity. Moreover,we present enhance-
ments to IndiGolog in three areas: a more effective replanning mecha-
nism for situations where the environment has changed, an approach
to planning in dynamic settings that uses a simulated environment,
and a mechanism that allows planning to be done within a larger pro-
gram that includes reactive threads.

1 Introduction

Synthesizing plans at run-time provides great flexibility, but is often
computationally infeasible. In [9], it is argued that high-level program
execution is a more practical alternative. The idea is that instead of
searching for a sequence of actions that takes the agent from an ini-
tial state to some goal state as in planning, the task is to find a se-
quence of actions that constitutes a legal execution of some high-level
program. By high-level program, we mean one whose primitive in-
structions are domain-dependent actions of the agent, whose tests in-
volve domain-dependent predicates that are affected by the actions,
and whose code may contain nondeterministic choice points where
lookahead is necessary to make a choice that leads to successful ter-
mination. As in planning, to find a sequence that constitutes a legal
execution of a high-level program, one must reason about the precon-
ditions and effects of the actions within the program. However, if the
program is almost deterministic, very little searching is required; as
more nondeterminism is included, the search task begins to resemble
traditional planning.

In [9], Golog was proposed as a suitable language for expressing
high-level programs for robots and autonomous agents. Golog sup-
ports program structures such as sequence, conditionals, loops, and
non-deterministic choice of actions and arguments. It uses a situation
calculus theory of action for the domain of the application to perform
the reasoning required in executing the program. In [2, 3], an exten-
sion called GonGolog was introduced, adding support for concurrent
processes with possibly different priorities, interrupts, and exogenous
events. These new constructs are useful for writing controllers that
react to environmental events while working on certain tasks. Both
languages have been implemented in Prolog.

Golog was used to design a high-level robot controller for a mail
delivery application [13]. Later, an enhanced version of that con-

1 Department of Computer Science, York University, Toronto, ON, Canada
M3J 1P3, email: flesperan,hokongg@cs.yorku.ca

troller that can react to new shipment orders and navigation failures
was implemented in ConGolog and tested on a RWI-B12 and Nomad
Super Scout [7]. A team at the University of Bonn also used Golog to
control a very successful museum guide robot [1].

Key features of real-world robot control applications are that the
environment is dynamic and that the system has incomplete knowl-
edge and must acquire information at run-time by performing sensing
actions. However, Golog and ConGolog, like earlier planning-based
systems, assume an off-line search model. That is, the interpreter is
taken to search all the way to a final state of a program before any
action is really executed. This can be a serious problem if, for in-
stance, the program involves a long running application, or if part of
the program depends on information that can only be obtained by do-
ing sensing at run-time. It is also impractical to spend large amounts
of time searching for a complete plan when the environment is very
dynamic. To address this limitation, an extension of ConGolog called
IndiGolog [4] has been developed; it supports the inclusion of plan-
ning/search components within an overall deterministic program that
is to be executed incrementally in conjunction with sensing of the en-
vironment.

Although IndiGolog as defined in [4] provides many useful fea-
tures for designing controllers that operate in dynamic and incom-
pletely known environments, it still has some limitations. Moreover,
it has never been used to implement a non-trivial robotics applica-
tion. In this paper, we show how robot control programs that exploit
IndiGolog’s new features can be written. Moreover, we present en-
hancements to the IndiGolog language and its interpreter in three ar-
eas: a more effective replanning mechanism for situations where the
environment has changed, an approach to planning in dynamic set-
tings that uses a simulated environment, and a mechanism that allows
planning to be performed within a larger program that includes reac-
tive threads. In the next section, we give an overview of IndiGolog.
Following that, we discuss the problems that motivated our enhance-
ments to IndiGolog, the solutions that were developed, and example
robot control programs that use these.

2 IndiGolog

As mentioned, our high-level programs contain primitive actions and
tests of predicates that are domain-dependent, and an interpreter for
such programs must reason about these. We specify the required do-
main theories in the situation calculus [10], a language of predicate
logic for representing dynamically changing worlds. In this language,
a possible world history, which is simply a sequence of actions, is
represented by a first order term called a situation. The constant S0
is used to denote the initial situation and the term do(�;s) denotes
the situation resulting from action � being performed in situation s.

Relations that vary from situation to situation, called predicate flu-
ents, are represented by predicate symbols that take a situation term
as last argument; for example, Holding(o; s) might mean that the
robot is holding object o in situation s. Similarly, functions whose
value varies with the situation, functional fluents, are represented by
function symbols that take a situation argument. The special predi-
cate Poss(�;s) is used to represent the fact that primitive action �
is executable in situation s. A domain of application will be specified
by theory that includes the following types of axioms:

� Axioms describing the initial situation, S0.
� Action precondition axioms, one for each primitive action �,

which characterizesPoss(�;s).
� Successor state axioms, one for each fluentF , which characterize

the conditions under which F (~x; do(a; s)) holds in terms of what
holds in situation s; these axioms may be compiled from effects
axioms, but provide a solution to the frame problem [12].

� Sensed fluent axioms, which relate the value returned by a sensing
action to the fluent condition it senses in the environment (since
these are not used in this paper, we omit the details; see [4]).

� Unique names axioms for the primitive actions.
� Some foundational, domain independent axioms.

An IndiGolog program implementing an agent or robot controller will
include such a domain theory.

An IndiGolog program also includes a procedural part that speci-
fies the behavior of the agent or robot. This is specified using the fol-
lowing constructs:

�, primitive action
�?, wait for a condition2

(�1; �2), sequence
if � then �1 else �2 endIf, conditional
while � do � endWhile, loop
proc �(~x) � endProc, procedure definition
�(~t), procedure call
(�1 j �2), nondeterministic choice between actions
(� ~x)[�], nondeterministic choice of arguments
��, nondeterministic iteration
(�1 k �2), concurrent execution
(�1 ii �2), concurrency with different priorities
�jj , concurrent iteration
< ~x : �! � >, interrupt
search(�), search block

The nondeterministic constructs include (�1 j �2), which nonde-
terministically choses between programs �1 and �2 , (�~x)[�], which
nondeterministically picks a binding for the variables ~x and performs
the program � for this binding of ~x, and ��, which means perform-
ing � zero or more times. Concurrent processes are modeled as in-
terleavings of the primitive actions involved. A process may become
blocked when it reaches a primitive action whose preconditions are
false or a wait action �? whose condition � is false. Then, execution
of the program may continue provided another process executes next.
In (�1 ii �2), �1 has higher priority than �2, and �2 may only exe-
cute when �1 is done or blocked. �jj is like nondeterministic iteration
�� , but the instances of � are executed concurrently rather than in se-
quence. Finally, an interrupt < ~x : � ! � > has variables ~x, a

2 Here, � stands for a situation calculus formula with all situation arguments
replaced by now; �[s] will denote the formula obtained by substituting
the situation term s for occurrences of now in all fluents appearing in �.
For simplicity, we often leave out leave out the situation argument now
altogether.

trigger condition �, and a body �. If the interrupt gets control from
higher priority processes and the condition � is true for some binding
of the variables, the interrupt triggers and the body is executed with
the variables taking these values.Once the body completes execution,
the interrupt may trigger again. We discuss the search block construct
below and give example IndiGolog programs in the next sections.

A prototype IndiGolog interpreter has been implemented in Prolog.
This implementation requires that the program’s domain theory be ex-
pressible as Prolog clauses, essentially closed theories; note that this
is a limitation of this particular implementation, not the framework.

IndiGolog’s semantics is definedin terms of transitions, in the style
of structural operational semantics [11, 6]. A transition is a single
step of computation, either a primitive action or testing whether a
condition holds in the current situation. Two special predicates are
introduced, Final and Trans, where Final(�; s) is intended to
say that program � may legally terminate in situation s, and where
Trans(�; s; �0; s0) is intended to say that program � in situation s

may legally execute one step, ending in situation s0 with program �0

remaining. Trans and Final are characterized by axioms such as:

Trans(�; s; �; s0) � primitive action
Poss(�;s) ^ � = nil ^ s0 = do(�;s)

Final(�; s) � False

Trans([�1 ; �2]; s; �; s
0) � sequence

Final(�1; s) ^ Trans(�2 ; s; �; s0)
_ 9�0:� = (�0; �2) ^ Trans(�1 ; s; �

0; s0)

Final([�1; �2]; s) � Final(�1; s) ^ Final(�2; s)

The first axiom says that a program involving a primitive action amay
perform a transition in situation s provided that a is possible in s, with
the resulting situation being do(a; s) and the remaining program be-
ing the empty program nil. The second axiom says that a program
with a primitive action remaining can never be considered to have ter-
minated. The third axiom says that one can perform a transition for a
sequenceby performing a transition for the first part, or by performing
a transition for the second part provided that the first part has already
terminated. The last axiom says that a sequence has terminated when
both parts have terminated.

IndiGolog has a search block construct search(�) for doing plan-
ning in a program ([4] uses the symbol � for search). In execut-
ing search(�), the interpreter searches to find a sequence of transi-
tions (primitive actions or tests) that leads to a final situation for the
block.3 For example, for the program search(a1;False? j a2; a3),
where j denotes nondeterministic choice between the two argument
programs, the interpreter would avoid the left branch which does not
lead to a final situation and chose to perform primitive action a2 (as-
suming preconditions are satisfied). In [4], the semantics of search
blocks is defined by the following axioms:

Trans(search(�); s; �0; s0) �
(9
0):�0 = search(
0) ^ Trans(�; s;
0; s0) ^
(9
00; s00):Trans�(
0; s0;
00; s00) ^ Final(
00; s00);

F inal(search(�); s) � Final(�; s):

The first axiom says that one can make a transition from a program
search(�) and a situation s to a program search(
0) and situation
s0, provided that one can make a transition from � and s to
0 and s0,
and there is a sequence of transitions that leads from these to a con-

3 When executing nondeterministic code that is not in a search block, In-
diGolog can choose transitions arbitrarily.

figuration that is Final, i.e., where the program may legally termi-
nate; Trans� is the reflexive transitive closure of Trans. The sec-
ond axiom simply says that a search block can be considered to have
successfully terminated in a situation s if and only the program that
remains in the block can successfully terminate in s. For more detail
on the IndiGolog language and semantics, see [4], as well as the ref-
erences on ConGolog [2, 3].

3 Enhancing the Replanning Mechanism

As explained, in executing a search block, IndiGolog performs looka-
head; it searches for an execution path (sequence of transitions) that
successfully gets it to the end of the search block, and then executes
the path. For efficiency, the interpreter caches the path found dur-
ing the initial search and keeps following it as long as no exogenous
action occurs. IndiGolog monitors for exogenous actions when the
robot/agent is operating in a dynamic environment — a form of sens-
ing. So when an exogenousaction does occur, the interpreter rechecks
the path and if it no longer leads to a final situation, a new search is
performed. Following the semantics given above, the interpreter in
[4] performs this replanning search for the program that is currently
left to execute in the search block. In effect, the interpreter has com-
mitted to finding an execution that follows the path through the pro-
gram taken so far. In some cases, there may be no such executions.
But this is unnecessarily restrictive. The only thing the agent is really
committed to are the actions performed so far. It should be able to take
another path through the program provided it involves performing the
same initial sequenceof actions. For example, if the initial program is
search(a1; a2 j a1;a3) and the initial search leads to selecting the
first branch and performing the action a1, and then an exogenous ac-
tion occurs that makes a2 not executable, the interpreter will be stuck
with search(a2) as remaining program and fail; it should realize that
a3 is a possible next action that is on a path through the original pro-
gram that starts with the actions it has already performed.

We have modified the IndiGolog interpreter so that the initial pro-
gram and situation of the search block are memorized, and when re-
planning is performed, the search starts from this initial program and
situation and goes through the current situation. The semantics for
this is as follows:

Trans(search(�); s; �0; s0) � Trans(search0(�; �; s); s; �0; s0);

Trans(search0(�; �i; si); s; �
0; s0) �

(9
;
0):�0 = search
0(
0; �i; si) ^

Trans�([�i k �exo]; si; [
 k �exo]; s) ^
Trans(
; s;
0; s0) ^
(9
00; s00):Trans�(
0; s0;
00; s00) ^ Final(
00; s00);

F inal(search(�); s) � Final(search0(�; �; s); s);

F inal(search0(�; �i; si); s;) �
(9
):Trans�([�i k �exo]; si; [
 k �exo]; s) ^ Final(
; s);

where �exo
def
=((� a)[Exo(a)?; a])�:

In the first and third axioms, we rewrite search(�) into
search

0(�; �; s) to memorize the the initial search block pro-
gram � and initial situation s. In the second axiom that defines
Trans, in the path that leads from the initial situation si to the
current situation s, we run the initial search block program �i
concurrently with a program �exo that can generate the exogenous
actions that have occurred. The next transition can be on any path
through the original program that involves the non-exogenous
actions that have already been done (and leads to a final situation).

Similarly in the last axiom defining Final, we allow termination
if the current situation is final for any path through the original
program that involves the non-exogenous actions that have already
been done.

Let us present an example of a useful robotics program that exploits
this enhancement.The program controls a robot to serve some clients,
for example, picking up and delivering mail, choosing the order in
which the clients are served so as to minimize the distance traveled
by the robot:

proc minimizeDistance(distance)
serveAllClientsWithin(distance)
j % or
minimizeDistance(distance+ 1)

endProc

proc serveAllClientsWithin(distance)
:(9c) ClientToServe(c)? % if no clients to serve; done

j % or
(�c; d)[(ClientToServe(c) ^ % choose a client to serve

d = distanceTo(c) ^ d � distance)?;
goto(c);
serveClient(c);
serveAllClientsWithin(distance � d)]

endProc

The program is run by executing search(minimizeDistance(0)).
The mimimizeDistance procedure does an iterative deepening
search to find a path that serves all the clients and minimizes the
distance traveled. Thus initially, in minimizeDistance(0),
the interpreter can choose between executing
serveAllClientsWithin(0) or minimizeDistance(1), and
looks for one that leads to a final situation. Suppose that the robot
has 3 clients to serve initially and has to travel a minimum of
6 units of distance to serve them all. Since it is impossible to
serve everyone in 0 distance (i.e., serveAllClientsWithin(0)
fails), minimizeDistance(1) is chosen. Then, the interpreter
faces another choice between serveAllClientsWithin(1) and
minimizeDistance(2). The distance bound will be incremented
until it reaches 6 and serveAllClientsWithin(6) succeeds.
Then, the original interpreter commits to the program branch
serveAllClientsWithin(6) and starts executing it and delivering
the mail. Now suppose that that at some later point, the robot receives
another service request from a client — an exogenous action. It then
has to find a new plan in order to serve all the clients including
the new one. However, with the original IndiGolog semantics and
interpreter, it is impossible to find such a plan since the distance
bound cannot be increased from 6 within the advanced program
serveAllClientsWithin(6).

With our modified semantics and enhanced interpreter that redoes
the search from the original program and situation, the bound can be
incremented and a new minimum path that includes the actions al-
ready performed and servesall the clients can be found. The enhanced
interpreter has been tested on a version of this mail delivery example,
as well as others. Its Prolog implementation will be described in sec-
tion 6.

4 Planning Using a Simulated Environment

In some cases, the robot/agent must not only react to exogenous ac-
tions, but also rely on their occurrence. For example, in a more re-
alistic account of navigation, the controller may need to wait for an

exogenousaction notifying it of whether the attempt to navigate to the
client’s location was successful. The serveAllClientsWithin pro-
cedure of the previous section can be changed to do this as follows:

proc serveAllClientsWithin(distance)
:(9c) ClientToServe(c)?
j
(�c; d)[(ClientToServe(c)? ^

d = distanceTo(c) ^ d � distance)?;
startGoto(c); % start to navigate to client

robotState 6=Moving?; % wait until robot stops

if robotState = Reached then
serveClient(c);

else
handleServiceFailure(c);

endIf;
serveAllClientsWithin(distance � d)]

endProc

Here, the program performs the primitive action startGoto(c) to
initiate motion to client c’s location, and then blocks at the test
robotState 6= Moving? until the robot stops moving. If the
robot is successful in reaching the destination, the exogenous action
reachDest occurs (a signal from the lower-levels of the architec-
ture), which changes robotState to Reached. Then, the robot can
deliver the mail to the client. If instead the robot fails to reach the des-
tination, then the exogenousaction getStuck occurs and robotState
changes to Stuck. Then, we handle the failure, for example by sus-
pending the client for some time. For a more extensive discussion of
failure handling, see [7].

Notice however, that exogenous actions like reachDest are not
part of the program and so the original IndiGolog interpreter cannot
find a plan in such cases (there is nothing in the program that can
make robotState 6= Moving true). Our approach to handle this
problem is that planning can be performed with a simulated environ-
ment, modeled as an IndiGolog program, that provides the required
feedback/interaction. The environment simulator program will con-
tain simulated exogenous actions that represent the dynamics of the
environment. For the example discussed above, the following envi-
ronment simulator program can be used:

proc envSimulator

< robotState = Moving ! sim(reachDest) >

endProc

The procedure contains an interrupt that is triggered when the robot
is moving, i.e., the condition robotState = Moving is true.
Then, it performs sim(reachDest), the simulated version of the
exogenous action reachDest. The program is run by executing
search(minimizeDistance(0) k envSimulator). That is, we
run the program to accomplish the task, minimizeDistance(0)
(serving all clients while minimizing the distance traveled), concur-
rently with the environment simulator program, and search to find
an execution. When an action by the environment is required during
the search, the simulator program will produce it, and a plan will be
found.

In the reasoning that occurs during planning, simulated actions
are treated just like the corresponding real action; for any fluent F ,
F (~x; do(sim(a); s)) holds if and only if F (~x; do(a;s)) holds, and
similarly for Poss. But simulated actions are never executed; when
the interpreter reaches a simulated action in the execution of a plan, it
waits for a real exogenous action to occur in the environment.4 If this

4 One can arrange for timeout exogenousactions to be generated if necessary.

exogenous action is the one expected, it replaces the simulated action
and execution continues, otherwise replanning is performed, for ex-
ample, to obtain a new plan where the unreachable client is suspended
and the remaining clients are served.

More complex environment simulation programs than the one
above can be used, for example one with a cooperating robot. But,
our interpreter will not produce plans that work for all possible re-
sponses of a nondeterministic environment. This would require gen-
erating conditional plans. We leave this for future work.

5 Combining Reactive and Planned Behaviors

Generally, a robot working in a dynamic environment must not only
perform actions to accomplish its main task, but also watch for rele-
vant changes in the environment and react immediately to deal with
these. Thus, its control program will contain a thread for accomplish-
ing the main task that will often involve search/planning, as well as
other threads to monitor for environmental changes and perform an
appropriate reaction. For example, we could add to the robot control
program discussedso far a separate thread to detect when a new client
order has been made and send an acknowledgementto the client when
that happens. The thread would run the following interrupt:

< o : NewOrder(o)! ackOrder(o) >

If we run this thread at higher priority than the main thread, then when
an exogenousaction signaling the arrival of a new order o occurs, the
robot will suspend its execution of the main plan and immediately
perform the acknowledgement action for order o. Afterward, it will
try to resume execution of the main plan and continue making deliv-
eries.

Unfortunately, the original IndiGolog interpreter throws the exist-
ing plan away and searches for a new plan in such cases. Moreover, if
the search/planning routine is only responsible for finding a plan for
the main thread, it does not have the information required to deal with
the actions that have been performed by the other reactive threads,
and replanning will fail.

One way to solve this problem is to put all the threads into the
search block and ask the interpreter to find a large plan that contains
the actions required to accomplish the main task as well as the actions
to handle exogenous actions:

proc control
search(< o : NewOrder(o)! ackOrder(o) >

ii % prioritized concurrency
minimizeDistance(0)
)

endProc

However, searching a larger program is less efficient. Moreover, the
interpreter must generate a whole new plan before it can execute the
actions that react to the changes in the environment (e.g. ackOrder),
leading to long reaction times.

We modified the IndiGolog semantics and interpreter so that it al-
lows programs to combine a main control thread that does search and
separate threads for reacting to various conditions. Then, the proce-
dure described above can be rewritten as:

proc control
< o : NewOrder(o)! ackOrder(o) >

ii
search(minimizeDistance(0))

endProc

This works by having a search block keep track of which primitive
actions it has performed. These can then be distinguished from primi-
tive actions performed by other reactive threads or exogenousactions.
When replanning occurs, only these need to be matched to actions
performed by the program in the search block. The semantics is a re-
finement of that presented in section 3:

Trans(search(�); s; �0; s0) � Trans(search0(�; �; s; ;); s; �0; s0)

Trans(search0(�; �i; si; I); s; �
0; s0) �

(9
;
0):�0 = search
0(
0; �i; si; I

0) ^
Trans�([�i k �o(I)]; si; [
 k �o(I)]; s) ^
Trans(
; s;
0; s0) ^
(s0 = s � I 0 = I) ^ ((9a)s0 = do(a; s) � I 0 = I [s0) ^
(9
00; s00):Trans�(
0; s0;
00; s00) ^ Final(
00; s00);

F inal(search(�); s;) � Final(search0(�; �; s; ;); s);

F inal(search0(�; �i; si; I); s;) �
(9
):Trans�([�i k �o(I)]; si; [
 k �o(I)]; s) ^ Final(
; s):

where �o(I)
def
=((�a)[if do(a; now) 62 I then a else False? endIf])�

Here, the I parameter keeps track of the actions that have occurred
and came from the program inside the search block; its value is a set
of situations do(a;s) where the last action a comes from inside the
search block. When we do a transition that performs an action, the re-
sulting situation is added to I . In the path that leads from the initial
situation si to the current situation s, we run the initial search block
program �i concurrently with a program �o(I) that generates the ac-
tions that have occurred and are exogenousor came from threads out-
side the search block.

6 Implementation

Let us now describe how the IndiGolog interpreter of [4] has been
modified to support our enhanced search mechanism. This is local-
ized in the Prolog clauses that that implement Trans and Final

for the search construct. The implementation differs from the se-
mantics in a few ways. First note that instead of situations, it
uses histories, which are essentially lists of actions since the ini-
tial situation. So for example, the history corresponding to situation
do(A3; do(A2; do(A1; S0)))would be the list[a3,a2,a1]. In our
implementation of the search mechanism, for efficiency, when an ex-
ecution path for a search block is found, it is cached so that no addi-
tional search is required unless the path becomes invalid. This can be
seen in the first clause below:

trans(search(E),H,E1,H1) :- findpath(E,H,P),
trans(followpath(P,E,H,[]),H,E1,H1).

findpath(E,H,[E,H]) :- final(E,H).
findpath(E,H,[E,H|P]) :-

trans(E,H,E1,H1), findpath(E1,H1,P).

The execution path found by findpath is saved by
transforming a program search(E) into the construct
followpath(P,E,H,[]), where P is the path found, E is
the initial search block program, H is the initial history, and the last
argument is a list of histories where an action from inside the search
block has just been performed, initially [].

Then, we follow the cached path without rechecking it as long as
the current history matches that present in the cached path:

trans(followpath([_E,H,E1,H|P],EI,HI,I),H,

followpath([E1,H|P],EI,HI,I),H) :- !.
/* no action done */

trans(followpath([_E,H,E1,[A|H]|P],EI,HI,I),H,
followpath([E1,[A|H]|P],EI,HI,[[A|H]|I]),
[A|H]) :- !. /* does action A */

If an outside action (or several) occurs and the current history CH
differs from that in the cachedpath H, then we first check if the cached
path still works (i.e., still leads to a final situation); if so, we fix it so
that the histories in it include the outside action(s), and continue fol-
lowing it:

trans(followpath([E,H,E2,H2|P],EI,HI,I),
CH,E1,H1) :-

canfixpath(CH,[E,H,E2,H2|P],P1),
trans(followpath(P1,EI,HI,I),CH,E1,H1), !.

canfixpath(CH,[E,_H],[E,CH]) :- final(E,CH).
canfixpath(CH,[E,H,E1,H1|P],[E,CH,E1,CH1|P1]):-

trans(E,CH,E1,CH1),
canfixpath(CH1,[E1,H1|P],[E1,CH1|P1]).

Otherwise, we must redo the search from the original program and
history. The code for this is as follows:

trans(followpath([_E,_H,_E1,_H1|_P],EI,HI,I),
CH,E1,H1) :-

append(I,[HI],I1),
extractAct([CH|I1],[],AL),
transStarCompat(AL,EI,HI,E2,CH),
findpath(E2,CH,P),
trans(followpath(P,EI,HI,I),CH,E1,H1).

extractAct([H,H|L],AL,R) :- !,
extractActIn([H|L],AL,R).

extractAct([[A|H1],H|L],AL,R) :-
extractAct([H1,H|L],[A|AL],R).

extractActIn([H0],AL,AL).
extractActIn([[A|H1],H|L],AL,R) :-

extractAct([H1,H|L],[inside(A)|AL],R).

transStarCompat([],E,H,E,H).
transStarCompat([],E,H,E1,H) :-

trans(E,H,E2,H),
transStarCompat([],E2,H,E1,H).

transStarCompat([inside(A)|L],E,H,E1,H1) :-
prim_action(A), trans(E,H,E2,[A|H]),
transStarCompat(L,E2,[A|H],E1,H1).

transStarCompat([A|L],E,H,E1,H1) :-
A \= inside(_A),
transStarCompat(L,E,[A|H],E1,H1).

transStarCompat([A|L],E,H,E1,H1) :-
trans(E,H,E2,H),
transStarCompat([A|L],E2,H,E1,H1).

In redoing the search from the original program EI and original his-
tory HI, we only want to consider paths that are consistent with the
actions that have occurred so far. To do this, we first make a list
AL of the actions that have occurred so far using extractAct
(and extractActIn), labeling the ones that have come from
inside the search block with inside(Action). Then, we use
transStarCompat to find a sequence of transition compatible

with the actions in AL from the original programEI and original his-
tory HI to a new remaining program E2 and the current history CH.
After that, we try to find a terminating execution path P for the new
remaining program E2, and if we do, we cache it and return the first
transition from it.

The clauses implementing Final appear below, and use no ideas
beyond those introduced above:

final(search(E),H) :- final(E,H).

final(followpath([_,H],_EI,_HI,_I),H) :- !.
/* off path; first check if final */
final(followpath([E,_H],_EI,_HI,_I),CH) :-

final(E,CH), !.
final(followpath([E,_H|_P],_EI,_HI,_I),CH) :-

final(E,CH), !.
/* else check if current history is final */
/* for some execution of original prog */
final(followpath(_P,EI,HI,I),CH):-

append(I,[HI],I1),
extractAct([CH|I1],[],AL),
transStarCompat(AL,EI,HI,E2,CH),
final(E2,CH).

7 Conclusion and Future Work

In this paper, we have shown that an enhanced version of the In-
diGolog programming language supports the development of effec-
tive high-level control programs for robots that operate in dynamic
and incompletely known environments. Such programs effectively
integrate planning, sensing the environment, and reactive plan exe-
cution to cope with relevant environmental changes.

The main enhancements that were made to IndiGolog are the fol-
lowing:

� In replanning, the search starts from the initial program and situ-
ation instead of the advanced program and situation. As a result,
there is no commitment to a particular branch in the user program.
Solutions can now be found for cases such as our iterative deepen-
ing route planner where the original interpreter would fail.

� A simulated environment facility was added to support planning
in a context where the agent must rely on the occurrence of exoge-
nous actions in the environment.

� Programs that combine threads that do search/planning with sepa-
rate threads that react to events can now be handled.This is done by
having search blocks keep track of the actions that are performed
by the block, and using this information in replanning. One can
then build robot controllers that react quickly and still do planning.

We have already tested our enhanced IndiGolog interpreter and
versions of the example robot control programs described earlier with
a simulated operating environment. We will soon be testing them with
a real Nomad Super Scout II robot operating in a real environment. As
in [7], the system will consist of a low-level reactive module that per-
forms path following and collision avoidance, a path planning mod-
ule, and a high-level deliberative module involving the IndiGolog in-
terpreter running the high-level robot control program. These mod-
ules will be running asynchronously to control the robot.

In future work, we would like to extend our current planning with
a simulated environment facility to support true contingent planning
[14, 5], i.e., the synthesis of plans that include conditional branching
(in the style of [8]) to deal with sensing results and unpredictable en-
vironments. We would also like to support the generation of plans that

contain sensing actions. We are also exploring the use of a reflective
interpreter as a way of providing the programmer with greater con-
trol over the IndiGolog planning and execution facility. As well, we
are working on a multi-robot version of the mail delivery application,
where each robot has its own IndiGolog controller, and the robots co-
operate to accomplish the task.

Acknowledgements

This research received financial support from Communications and
Information Technology Ontario and the Natural Science and Engi-
neering Research Council of Canada. We thank Hector Levesque and
Michael Jenkin for their comments. Hector provided help with the
Prolog implementation.

REFERENCES
[1] W. Burgard, A.B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer,

D. Schulz, W. Steiner, and S. Thrun, ‘The interactive museum tour-
guide robot’, in Proceedings of the 15th National Conference on Arti-
ficial Intelligence. AAAI Press, (July 1998).

[2] Giuseppe De Giacomo, YvesLespérance, and Hector J. Levesque, ‘Rea-
soning about concurrent execution, prioritized interrupts, and exoge-
nous actions in the situation calculus’, in Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, pp. 1221–
1226, Nagoya, Japan, (August 1997).

[3] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘ConGolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, (2000). To Appear.

[4] Giuseppe De Giacomo and Hector J. Levesque, ‘An incremental inter-
preter for high-level programs with sensing’, in Logical Foundations
for Cognitive Agents, eds., Hector J. Levesque and Fiora Pirri, 86–102,
Springer-Verlag, Berlin, Germany, (1999).

[5] E. Guere and R. Alami, ‘A possibilistic planner that deals with non-
determinism and contingency’, in Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI’99), pp. 996–1001,
Stockholm, (August 1999).

[6] M. Hennessy, The Semantics of Programming Languages, John Wiley
& Sons, 1990.

[7] Yves Lespérance, Kenneth Tam, and Michael Jenkin, ‘Reactivity in a
logic-based robot programming framework’, in Intelligent Agents VI —
Agent Theories, Architectures, and Languages, 6th International Work-
shop, ATAL’99, Proceedings, eds., N. Jennings and Y. Lespérance, vol-
ume 1757 of LNAI, 173–187, Springer-Verlag, (2000).

[8] Hector J. Levesque, ‘What is planning in the presence of sensing?’, in
Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence, pp. 1139–1146, Portland, OR, (August 1996).

[9] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl, ‘GOLOG: A logic programming language for
dynamic domains’, Journal of Logic Programming, 31(59–84), (1997).

[10] John McCarthy and Patrick Hayes, ‘Some philosophical problems from
the standpoint of artificial intelligence’, in Machine Intelligence, eds.,
B. Meltzer and D. Michie, volume 4, 463–502, Edinburgh University
Press, Edinburgh, UK, (1979).

[11] G. Plotkin, ‘A structural approach to operational semantics’, Techni-
cal Report DAIMI-FN-19, Computer Science Dept., Aarhus University,
Denmark, (1981).

[12] Raymond Reiter, ‘The frame problem in the situation calculus: A sim-
ple solution (sometimes) and a completeness result for goal regression’,
in Artificial Intelligence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy, ed., Vladimir Lifschitz, 359–380,
Academic Press, San Diego, CA, (1991).

[13] K. Tam, J. Lloyd, Y. Lespérance, H. Levesque, F. Lin, D. Marcu, R. Re-
iter, and M. Jenkin, ‘Controlling autonomous robots with GOLOG’, in
Proceedings of the Tenth Australian Joint Conference on Artificial In-
telligence (AI-97), pp. 1–12, Perth, Australia, (November 1997).

[14] D.S. Weld, C.R. Anderson, and D.E. Smith, ‘Extending graphplan to
handle uncertainty and sensing actions’, in Proceedings of the 15th Na-
tional Conference on Artificial Intelligence, pp. 897–904. AAAI Press,
(July 1998).

