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Abstract. We develop an account of the kind of deliberation that an agent that is doing plan-
ning or executing high-level programs under incomplete information must be able to perform.
The deliberator’s job is to produce a kind of plan that does not itself require deliberation
to interpret. We characterize these as epistemically feasible programs: programs for which
the executing agent, at every stage of execution, by virtue of what it knew initially and the
subsequent readings of its sensors, always knows what step to take next towards the goal of
completing the entire program. We formalize this notion and characterize deliberation in the
situation calculus based IndiGolog agent programming language in terms of it. We also show
that for certain classes of problems, which correspond to those with bounded solutions and
those with solutions without sensing, the search for epistemically feasible programs can be
limited to programs of a simple syntactic form. Finally, we discuss implementation issues and
execution monitoring and replanning too.
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1. Introduction

While a large amount of work on planning deals with issues of efficiency, a
number of representational questions remain. This is especially true in ap-
plications where, because of limitations on the information available at plan
time, and quite apart from computational concerns, no straight-line plan (that
is, no linear sequence of actions) can be demonstrated to achieve a goal. In
very many cases, it is necessary to supplement what is known at plan time by
information that can only be obtained at run time via sensing.

In cases like these, what should we expect a planner to do given a goal?
We cannot expect it to return a straight-line plan. We could get it to return a
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more general program of some sort, but we need to be careful: if the program
is general enough, it may be as challenging to figure out how to execute it as
it was to achieve the goal in the first place.

This is certainly true for situation calculus high-level programming lan-
guages in the family of Golog [17, 4, 25]. These logic languages offer an
interesting alternative to planning in which the user specifies not just a goal,
but also constraints on how it is to be achieved, perhaps leaving small sub-
tasks to be handled by an automatic planner. In that way, a high-level program
serves as a “guide” heavily restricting the search space. In these languages
primitive instructions are domain-dependent actions of the robot, tests involve
domain-dependent fluents affected by these actions, and the code may contain
nondeterministic choice points. Instead of looking for a legal sequence of
actions achieving some goal, the (planning) task now is to find a sequence
that constitutes a legal execution of a high-level program.

At its most basic, planning should be a form of deliberation, whose pur-
pose is to produce a specification of the desired behavior, a specification
which should not itself require deliberation to interpret. In [15] it was sug-
gested that a planner’s job was to return a robot program, a syntactically-
defined structure that a robot could follow while consulting its sensors to
determine a conditional course of action. Other forms of conditional plans
have been proposed, for example, in [21, 30, 11, 1]. What these all have in
common, is that they define plans as syntactically restricted programs.

In this paper, we consider a different and more abstract version of plans.
We propose to treat plans as epistemically feasible programs: programs for
which the executing agent, at every stage of execution, by virtue of what it
knew initially and the subsequent readings of its sensors, always knows what
step to take next towards the goal of completing the entire program.

This paper will not present algorithms for generating epistemically feasi-
ble programs. What we will do, however, is characterize the notion formally,
prove that certain cases of syntactically restricted programs are epistemically
feasible, and that in some cases where there is an epistemically feasible pro-
gram, a syntactically restricted one that has the same outcome can also be
derived.

To make these concepts precise, it is useful to consider a framework where
we can talk about the planning and execution of very general agent programs
involving sensing and acting. IndiGolog [5] is a variant of Golog intended
to be executed online in an incremental way. Because of this incremental
style execution, an agent program is capable of gathering new information
from the world during its execution. Most relevant for our purposes is that
IndiGolog includes a search operator which allows it to only take a step if
it can convince itself that the step will allow it to eventually complete some
user-specified subprogram. In that way, IndiGolog provides an attractive inte-
grated account of sensing, planning, and action. However, IndiGolog search
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does not guarantee that it will not get stuck in a situation where it knows
that some step can be performed, but does not know which. It is this search
operator that we will generalize here.

Our proposed account of deliberation is important to the area of agent pro-
gramming languages (e.g. 3APL [10], AgentSpeak(L) [23], etc.). So far most
such languages only provide on-line reactive execution, where no planning
is performed (notable exceptions are the temporal logic-based Concurrent
MetateM [9] and the fluent calculus-based FLUX [32, 33]). But many agent
applications would benefit from planning, especially if incomplete knowledge
and sensing were handled (e.g. web service composition).

To illustrate the discussion, we will use a simple example taken from
[15]: an agent wants to get on a flight at the airport; however, the agent
does not know in advance which gate it must go to; it must acquire this
information after it has arrived at the airport, and then proceed to the gate.
To perform planning to solve this problem, one could give IndiGolog the
following program to execute:

getOnFlightSketchy
def
=

Σ(achieve(OnPlane(Flight123),True))

where achieve(Goal,GoodSit)
def
=

while ¬Goal do
πa[a;GoodSit(now)?]

endWhile

Here, achieve(Goal,GoodSit) is a completely general nondeterministic pro-
gram schema that keeps choosing an action a nondeterministically and exe-
cuting it for as long as the goal does not hold. (GoodSit is a predicate on situ-
ations that that can be used to constrain the search, but in our example this is
not used.) We use an appropriate instance of this schema,
achieve(OnPlane(Flight123),True), set within the scope of the search op-
erator Σ, to direct IndiGolog to search for a plan that is guaranteed to lead to
a situation where the program given can successfully terminate, i.e., where
the agent is on its flight. This works provided an adequate axiomatization of
the airport domain has been given, which we do in the next section.

We can contrast this very sketchy nondeterministic program with the fol-
lowing one that is completely detailed and determinate (we assume that the
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airport has only two gates):

getOnFlightDetailed
def
=

go(Airport);
checkDepartures; % sensing action
if Parked(Flight123,GateA) then

go(GateA);board(Flight123)
else

go(GateB);board(Flight123)
endIf

This program could have been defined by the user, or it could have been re-
turned by the planner. Note that without the sensing action checkDepartures,
the plan cannot be executed since it will not be epistemically feasible any-
more! One could also use a program that is less specific than the above but
more specific than the first, for instance, one that directs the agent to first
achieve being at the airport, then achieve knowing what gate the flight is at,
and then achieve being on the flight. In such a framework, the programmer
gets to control how much search the interpreter must do. We will return to
this example later on.

The rest of the paper is organized as follows. First, in Section 2 we set the
stage by presenting the situation calculus and high-level programs based on
it. In Section 3, since we are going to make a specific use of the knowledge
operator for characterizing the program returned by the deliberator, we intro-
duce epistemically accurate theories and some of their basic properties with
respect to reasoning. In Section 4, we characterize epistemically feasible
deterministic programs, i.e., the kind of program that we consider suitable
results of the deliberation process, and in Section 5, we study two notable
subclasses of epistemically feasible deterministic programs, that can be char-
acterized in terms of syntax only. In Section 6, we discuss how some of the
abstract notions we have introduced can be readily implemented in practice.
In Section 7, we discuss how the deliberated program could be monitored and
revised if circumstances require it. Finally, in Section 8, we draw conclusions
and discuss related and future work.

2. The Situation Calculus and IndiGolog

The technical machinery we use to define program execution in the presence
of sensing is based on that of [5, 4]. The starting point in the definition is the
situation calculus [18]. We will not go over the language here except to note
the following components: there is a special constant S0 used to denote the
initial situation, namely that situation in which no actions have yet occurred;
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there is a distinguished binary function symbol do where do(a,s) denotes
the successor situation to s resulting from performing the action a; relations
whose truth values vary from situation to situation, are called (relational)
fluents, and are denoted by predicate symbols taking a situation term as their
last argument; and there is a special predicate Poss(a,s) used to state that
action a is executable in situation s. Actions may be ordinary physical actions
though which the agent changes its environment or sensing actions through
which he acquires new information. In this paper, we only deal explicitly
with sensing actions with binary outcomes as in [15]. However, the results
presented here can be easily generalized to sensors with multiple outcomes.
We use a predicate SF(a,s) to characterize what the action tells the agent
about the environment. For a sensing action senseφ that senses the truth value
of φ, we would have [SF(senseφ,s) ≡ φ(s)], and for any ordinary action a
that does not involve sensing, we would have [SF(a,s) ≡ True]. We assume
that SF(a,s) holds if and only if action a returns the binary sensing result 1
in situation s. When the agent performs a sensing action a in situation s, his
knowledge base/theory will be expanded with either SF(a,s) or its negation.

Within this language, we can formulate domain theories which describe
how the world changes as the result of the available actions. One possibility
is an action theory D of the following form (see [25] for details):

− Dap is the set of action precondition axioms, one for each primitive
action a, characterizing Poss(a,s).

− Dss is the set of successor state axioms, one for each fluent F , stating
under what conditions F(~x,do(a,s)) holds as a function of what holds
in situation s; these take the place of effect axioms, but also provide a
solution to the frame problem [24].

− Ds f is the set of sensed fluent axioms, one for each primitive action a of
the form SF(a,s) ≡ φa(s), characterizing SF [15].

− Duna is the set of unique names axioms for the primitive actions.

− DS0 is the set of axioms describing the initial situation, S0.

− Some foundational, domain independent axioms [25].

For instance, for our airport example, we could use the following action
theory:1

− Precondition axioms:
Poss(go(x),s) ≡ x = Airport ∨At(Airport,s)

1 We omit here unique name axioms for constants, as well as domain closure axioms,
including one saying that gate A and gate B are the only gates.
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Poss(board(p),s) ≡ ∃x.Parked(p,x,s)∧At(x,s)
Poss(checkDepartures) ≡ ¬At(Home,s)

− Successor state axioms:
At(x,do(a,s)) ≡ a = go(x)∨At(x,s)∧¬∃ya = go(y)
OnPlane(p,do(a,s)) ≡ a = board(p)∨OnPlane(p,s)
Parked(p,x,do(a,s)) ≡ Parked(p,x,s)

− Sensed fluent axioms:
SF(go(x),s) ≡ TRUE , SF(board(p),s) ≡ TRUE ,
SF(checkDepartures,s) ≡ Parked(Flight123,GateA,s)

To describe a run which includes both actions and their sensing results,
we use the notion of a history. A history is a sequence of pairs (a,x) where
a is a primitive action and x is 1 or 0, a sensing result. Intuitively, the history
σ = (a1,x1) · . . . · (an,xn) is one where actions a1, . . . ,an happen starting in
some initial situation, and each action ai returns sensing value xi. We assume
that if ai is an ordinary action with no sensing, then xi = 1. For example in
the airport domain,

σ1 = (go(Airport),1) · (checkDepartures,0) · (go(GateB),1)

would be a possible history, where the agent first goes to the airport, then
senses the departure screen and gets a sensing result of 0, meaning that the
flight is not at gate A, and then goes to gate B. Notice that the empty sequence
ε is a history.

We use end[σ] as an abbreviation for the situation term called the end
situation of history σ on the initial situation S0, and defined by: end[ε] = S0;
and inductively, end[σ · (a,x)] = do(a,end[σ]). So for example:

end[σ1] = do(go(GateB),do(checkDepartures,do(go(Airport),S0 ))).

We also use Sensed[σ] as an abbreviation for a formula of the situation
calculus, the sensing results of a history, and defined by: Sensed[ε] = True;
and inductively, Sensed[σ ·(a,1)] = Sensed[σ]∧SF(a,end[σ]), and Sensed[σ ·
(a,0)] = Sensed[σ]∧¬SF(a,end[σ]). This formula uses SF to tell us what
must be true for the sensing to come out as specified by σ starting in S0. So
for example, Sensed[σ1] stands for:

SF(go(Airport),S0)∧
¬SF(checkDepartures,do(go(Airport),S0))∧
SF(go(GateB),do(checkDepartures,do(go(Airport),S0)))

which is equivalent to ¬Parked(Flight123,GateA).
Next we turn to programs. The programs we consider here are based on the

ConGolog language defined in [4], which provides a rich set of programming
constructs summarized below:
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α, primitive action
φ?, wait for a condition
δ1;δ2, sequence
δ1 | δ2, nondeterministic branch
πx.δ, nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher priority
δ||, concurrent iteration
〈~x : φ → δ 〉, interrupt
p(~θ), procedure call2

Among these constructs, we notice the presence of nondeterministic con-
structs. These include (δ1 | δ2), which nondeterministically chooses between
programs δ1 and δ2, πx.δ, which nondeterministically picks a binding for
the variable x and performs the program δ for this binding of x, and δ∗, which
performs δ zero or more times. Also notice that ConGolog includes constructs
for dealing with concurrency. In particular (δ1 ‖ δ2) expresses the concurrent
execution (interpreted as interleaving) of the programs δ1 and δ2. Beside
(δ1 ‖ δ2) ConGolog includes other constructs for dealing with concurrency,
such as prioritized concurrency (δ1 〉〉 δ2), and interrupts 〈 ~x : φ → δ 〉. We
refer the reader to [4] for a detailed account of ConGolog.

In [4], a single step transition semantics in the style of [22] is defined for
ConGolog programs. Two special predicates Trans and Final are introduced.
Trans(p,s, p′,s′) means that by executing program p starting in situation s,
one can get to situation s′ in one elementary step with the program p′ remain-
ing to be executed, that is, there is a possible transition from the configuration
(p,s) to the configuration (p′,s′). Final(p,s) means that program p may
successfully terminate in situation s, i.e., the configuration (p,s) is final.3

Offline executions of programs, which are the kind of executions origi-
nally proposed for Golog and ConGolog [17, 4], are characterized using the
Do(p,s,s′) predicate, which means that there is an execution of program p

2 For the sake of simplicity, we will not consider procedures in this paper.
3 For example, the transition requirements for sequence are

Trans([p1; p2],s, p′,s′) ≡
Final(p1,s)∧Trans(p2,s, p′,s′) ∨ ∃q′.Trans(p1,s,q′,s′)∧ p′ = (q′; p2)

i.e., to single-step the program (p1; p2), either p1 terminates and we single-step p2, or we
single-step p1 leaving some q′, and (q′; p2) is what is left of the sequence. Note that since
Trans and Final take programs (that include test of formulas) as arguments, this requires
encoding formulas and programs as terms; see [4] for the details. For notational simplicity, we
suppress this encoding and use programs as terms directly.
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that starts in situation s and terminates in situation s′:

Do(p,s,s′)
def
= ∃p′.Trans∗(p,s, p′,s′)∧Final(p′,s′),

where Trans∗ is the reflexive transitive closure of Trans, i.e.

Trans∗(δ,s,δ′,s′) def
=
∀T.[∀δ1,s1.T (δ,s,δ,s)∧

∀δ1,s1.δ2,s2,δ3,s3(Trans(δ1,s1,δ2,s2) ∧
T (δ2,s2,δ3,s3) ⊃ T (δ1,s1,δ3,s3))

⊃ T (δ,s,δ′,s′)].

From now on, D will denote the set of axioms defining an underlying
theory of action, T will denote the set of axioms for Trans and Final, and
E will stand for the set of axioms needed for the encoding of programs as
first-order terms (see [4]). An offline execution of program p from situation s
is a sequence of actions a1, . . . ,an such that:

D ∪T ∪E |= Do(p,s,do(an, . . . ,do(a1,s)))

Observe that an offline executor is in fact similar to a planner that given a
program, a starting situation, and a theory describing the domain, produces
a sequence of action to execute in the environment. In doing this, it has no
access to sensing results, which will only be available at runtime. See [4] for
more details.

In [5], IndiGolog, an extension of ConGolog that deals with online execu-
tions with sensing is developed. We say that a configuration, this time formed
by a program and a history, (p,σ) may evolve to configuration (p′,σ′) w.r.t. a
model M of D ∪T ∪E ∪{Sensed[σ]} if and only if4

D ∪T ∪E ∪{Sensed[σi]} |= Trans(p,end[σ], p′ ,end[σ′])

and

σ′ =























σ if end[σ′] = end[σ],
σ · (a,1) if end[σ′] = do(a,end[σ])

and M |= SF(a,end[σ])
σ · (a,0) if end[σ′] = do(a,end[σ])

and M 6|= SF(a,end[σ])

Finally, we say that a configuration (p,σ) is final whenever

D ∪T ∪E ∪{Sensed[σ]} |= Final(p,end[σ])

4 This definition is more general than the one in [5], where the sensing results were as-
sumed to come from the actual environment rather than from a model (a model can represent
any possible environment). Also, here we deal with non-terminating, i.e., infinite executions.
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We now define several kinds of online executions. A non-terminating on-
line execution of an IndiGolog program p starting from a history σ w.r.t.
a model M of D ∪T ∪E ∪ {Sensed[σ]} is an infinite sequence of online
configurations (p0 = p,σ0 = σ),(p1,σ1), . . . , such that configuration (pi,σi)
may evolve to configuration (pi+1,σi+1) w.r.t. model M for every i ≥ 0.

On the other hand, a terminating online execution of an IndiGolog pro-
gram p starting from a history σ w.r.t. a model M of D ∪T ∪E ∪{Sensed[σ]}
is a finite sequence of online configurations (p0 = p,σ0 = σ), . . . ,(pn,σn)
such configuration (pi,σi) may evolve to configuration (pi+1,σi+1) w.r.t.
model M for every 0 ≤ i ≤ n− 1, and either (pn,σn) is a final configuration
or (pn,σn) is not a final configuration and there is no configuration (p′,σ′)
to which (pn,σn) may evolve w.r.t. M. In the former case, we say that the
online execution successfully terminates; in the latter case, we say that the
online execution is stuck or has reached a dead-end. Finally, we say that an
online execution is complete if it is either a non-terminating or a terminating
execution.

The following lemma says that the model used to generate sensing out-
comes is always a model of the theory at every step of the online execution.

LEMMA 1. If (p0 = p,σ0 = σ), . . . ,(pn,σn) is an online execution of pro-
gram p at σ w.r.t. a model M of D ∪T ∪E ∪{Sensed[σ]}, then M is a model
of D ∪T ∪E ∪{Sensed[σi]} for all i ≥ 0.

Proof. Trivial since M is a model of D ∪T ∪E ∪{Sensed[σ]} and every
sentence SF(A,S) added to such set at every online step, where A is an ground
action term and S is a ground action term, is also satisfied by M.

So for the example program getOnFlightDetailed , we would have the fol-
lowing tree of online executions:

PSfrag replacements

D ∪T ∪ED ∪T ∪E

D ∪T ∪E ∪

D ∪T ∪E ∪D ∪T ∪E ∪ D ∪T ∪E ∪

D ∪T ∪E ∪D ∪T ∪E ∪

go(Airport); ... checkDep; ...

if...then...else...

if...then...else... board

board

go(GateA)

go(GateB)

Parked(Fl,GateA)Parked(Fl,GateA)Parked(Fl,GateA)

Parked(Fl,GateB)Parked(Fl,GateB) Parked(Fl,GateB)

1

0

Depending on the result of the checkDepartures sensing action, the theory
gets updated differently and different online executions ensue.

There is no automatic lookahead in IndiGolog. Instead, a search opera-
tor Σ(p) is introduced to allow the programmer to specify when lookahead
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should be performed. Final and Trans are defined for the new operator as
follows. For Final, we simply have that (Σ(p),s) is a final configuration of
the program if (p,s) itself is, i.e.,

Final(Σ(p),s) ≡ Final(p,s)

For Trans, we have that the configuration (Σ(p),s) can evolve to (Σ(q′),s′)
provided that (p,s) can evolve to (q′,s′) and from (q′,s′) it is possible to reach
a final configuration in a finite number of transitions, i.e.,

Trans(Σ(p),s, p′,s′) ≡ ∃q′,s f . p′ = Σ(q′)∧Trans(p,s,q′,s′)∧Do(q′,s′,s f )

This semantics means that the set of axioms D ∪T ∪E ∪{Sensed[σ]} entails
Trans(Σ(p),end[σ],Σ(p′),s′) if and only if it entails Trans(p,end[σ], p′ ,s′)
as well as ∃s f .Do(p′,s′,s f ). Thus, with this definition, the axioms entail that
a step of the program can be performed provided that they entail that this step
can be extended into a complete execution (i.e., in all models). This prunes
executions that are bound to fail later on. But it does not guarantee that the ex-
ecutor will not get stuck in a situation where it knows that some transition can
be performed, but does not know which. For example, consider the program
(a; if φ then b else c) | d, where actions a, b, c, and d are always possible, but
where the agent does not know whether φ holds after a. There are two possible
first steps, d which terminates successfully, and a after which the executor is
stuck. Unfortunately, Σ does not distinguish between the two cases, since
even in the latter, there does exist an (unknown) transition to a final state. We
address this problem in our account of deliberation of Section 4.

3. Epistemically Accurate Theories

As mentioned in the introduction, our account of deliberation is based on the
agent finding a plan which is an epistemically feasible program, a program
for which he always knows what step to do next. To formalize this notion,
we will use action theories that are extended with a knowledge operator. Our
goal in introducing knowledge is only to be able to refer in the language
to what the agent knows after a sequence of sensing actions (which we did
metatheoretically in the previous section). So we only consider theories that
are epistemically accurate, meaning that, among other things, what is known
accurately reflects what the theory says about the dynamic system.5

To represent knowledge in the language, we follow [20, 29, 15] and use
a fluent K(s′,s) to specify which situations s′ are considered epistemically

5 In [26] and [25], chapter 11, a similar notion is used to deal with knowledge-based
programs and reduce knowledge to provability.
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possible by the agent in situation s. Know(φ(now),s) is then taken to be an
abbreviation for the formula ∀s′.K(s′,s) ⊃ φ(now/s′).

First we introduce the notion of objective formula (cf. [25], chapter 11).
Intuitively, an objective formula on a situation s̄ is one that only talks about
the world (not the knowledge of it) in the situation s̄. Formally, objective
formulas on situation s̄ are inductively defined as follows:6

− If F(~t, s̄) is a relational atom, then F(~t, s̄) is an objective formula on s̄;

− If t1, t2 are terms not of sort situation (that is, object, action or program
terms,) then t1 = t2 is an objective formula on s̄;

− If φ1 and φ2 are objective formulas on s̄ then so are ¬φ1, φ1 ∧ φ2, and
∃xφ1, where x is a variable not of sort situation.

Note that neither Trans nor Final can be mentioned in objective formulas.
Epistemically accurate theories are theories as introduced earlier, but with

the following additional constraints:

1. The initial situation is characterized by an axiom of the form
Know(ψ0(now),S0), that is, DS0 = {Know(ψ0(now),S0)}, where ψ0(now)
is an objective formula on the situation denoted by now. Note that there
can be fluents about which nothing is known in the initial situation.

2. Every sensing axiom SF(A(~x),s) ≡ ψ(~x,s) is such that ψ(~x,now) is an
objective formula.

3. Every precondition axiom Poss(~x,s) ≡ ψ(~x,s) is such that ψ(~x,now) is an
objective formula.

4. The set of successor state axioms D ss includes the following successor
state axiom for the knowledge fluent K [29]:

K(s′′,do(a,s)) ≡ ∃s′.s′ = do(a,s′)∧K(s′,s)∧ [SF(a,s′) ≡ SF(a,s)].

All other successor state axioms F(~x,do(a,s)) ≡ ψ(~x,s) are such that
ψ(~x,now) is an objective formula.

5. There is an axiom K Init stating that the accessibility relation K is, at least,
reflexive in the initial situation, which is then propagated to all situations
by the successor state axiom for K [29].

6. There are no functional fluents, as before, and no non-fluent relations
except for equality, v and Poss.7

6 Notice that, in contrast to [25], our objective formulas include equality between program
terms.

7 Note that, it is straightforward to represent non-fluent relations using “eternal” relational
fluents. Also, functional fluents can also represented using relational fluents.
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7. Duna∪ψ0(S0) decides all equality sentences not mentioning any program
term or any program variable, that is, for any sentence over the language
of the theory whose only predicate symbol is equality and such that β
mentions no program term or variable, Duna ∪ ψ0(S0) |= β or Duna ∪
ψ0(S0) |= ¬β.

8. There are a finite number of action types A1(~x1), ...,An(~xn), and the agent
knows this. Formally,

ψ0(S0) |= ∀a.[∃~x1.a = A(~x1)∨ ...∨∃~xn.a = A(~xn)]

9. There are domain closure and unique name axioms for objects, and the
agent knows this. Formally,

ψ0(S0) |= ∀x.(∀R.[R(0)∧ (∀y.R(y) ⊃ R(ς(y))) ⊃ R(x)])

ψ0(S0) |= ∀x.0 6= ς(x)∧ x 6= ς(x)

This forces the object domain to be isomorphic to the countably infinite
set of standard names 0,ς(0),ς(ς(0)), ... (see [16]).8

Observe that because of assumption 7, whenever we have a program of
the form πa.δ(a), where a is an action, we can rewrite it (without loss of
generality) as program π~x1.δ(A1(~x1))|...|π.~xn.δ(An(~xn)) assuming A1, ...,An

are all the action types available. This shows that we do not need to deal
with existential quantification over action variables, since we can replace
nondeterministic choice of action by a nondeterministic branch over all the
available action types. It should be clear that any action theory of the form
specified in Section 2 that satisfies restrictions 6 to 9 can be transformed
into an epistemically accurate theory. Note that we also require that tests
appearing in programs be objective formulas that do not mention program
terms.

From now on, we will restrict to particular types of theories D respecting
the above assumptions. First we show that every occurrence of Trans and
Final can be substituted by an equivalent objective formula.

THEOREM 1. For any ConGolog program term p(~x) containing only vari-
ables ~x of sort object, there exist objective formulas φ f (~x,s),φtt (~x, p′,s), and
φta(~x, p′,s) containing no free variables other than the ones listed, not men-
tioning Trans, nor Final, and such that:

D ∪T ∪E |= Final(p(~x,s) ≡ φ f (~x,s)

D ∪T ∪E |= Trans(p(~x),s, p′,s) ≡ φtt(~x, p′,s)

D ∪T ∪E |= Trans(p(~x),s, p′,do(a,s)) ≡ φta(~x, p′,a,s)

8 For simplicity, we assumed these sentences to be entailed by ψ0(S0), but, since they are
situation-independent sentences, they can very well be included in DS0 and not in ψ0(S0).
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Proof. Straightforward by induction on the structure of the programs.9 See
appendix.

Next, we show some basic properties of epistemically accurate theories
that will be used in the following. The first says that if some objective property
of the system is entailed, then it is also known and vice-versa.

THEOREM 2. Let φ(s) be an objective formula on situation s. Then,

D ∪E ∪{Sensed[σ]} |= φ(end[σ])
if and only if

D ∪E ∪{Sensed[σ]} |= Know(φ,end[σ])
Proof. See appendix.

The next two results tell us that, in some sense, what we know about the
agent’s knowledge is “complete.”

THEOREM 3. Let φi(now), i = 1..n be objective formulas. Then,

D ∪E ∪{Sensed[σ]} |=
Know(φ1(now),end[σ])∨ ...∨Know(φn(now),end[σ])

if and only if D ∪E ∪{Sensed[σ]} |= Know(φk(now),end[σ]), for some 1 ≤
k ≤ n.

Proof. See appendix.

THEOREM 4. Let φ(~x,s) be an objective formula on situation s with non-
situation free variables ~x. Then

D ∪E ∪{Sensed[σ]} |= ∃~x.Know(φ(~x,now),end[σ])

if and only if there are ground terms~t such that

D ∪E ∪{Sensed[σ]} |= Know(φ(~t ,now),end[σ]).
Proof. See appendix.

Finally, under some restrictions on what is known, we can combine the
previous two theorems into a single result.

THEOREM 5. Let φ1(now), φ2(~x,now), and φ3(~y,now) be three objective
formulas with non-situation free variables ~x and~y. If

D ∪E ∪{Sensed[σ]} |=
Know(φ1(now),end[σ]) ∨
∃~x.Know(¬φ1(now)∧φ2(~x,now)∧∀~y.¬φ3(~y,now),end[σ]) ∨
∃~y.Know(¬φ1(now)∧∀~x.¬φ2(~x,now)∧φ3(~y,now),end[σ])

then D ∪E ∪{Sensed[σ]} entails one of the following closed formulas:

9 Remember that we are not allowing for recursive procedures in this paper.
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1. Know(φ1(now),end[σ]);

2. Know(φ2(~t2,now),end[σ]), for some ground terms ~t2;

3. Know(φ3(~t3,now),end[σ]), for some ground terms ~t3.
Proof. The theorem follows easily as a consequence of Lemma 7 in the

Appendix (Section A) and of Theorem 4.

4. Deliberation Program Steps

We are going to introduce and semantically characterize the deliberation steps
in the program. The basic idea of the semantics we are going to develop
is that the task of the deliberator (that performs search) is, given a possible
highly nondeterministic program, to try to find a deterministic program that
is guaranteed to be “executable” and constitutes a way to execute the original
program, in the sense that it always leads to terminating situations of the origi-
nal program. Another way to look at this is that the deliberator tries to identify
a “strategy” for reaching a final situation of the original program. In such a
strategy, all choices must be resolved, i.e., the corresponding program needs
to be deterministic, and only information that is available to the executor
may be used (e.g., to branch on). In doing this task, the deliberator performs
essentially the same task as the offline executor: it compiles the original pro-
gram into a simpler program that can be executed without any lookahead. The
program it produces however, is not just a linear sequence of actions; it can
perform sensing, branching, iteration, etc. Moreover, the program is checked
to ensure that the executor will always have enough information to continue
the execution. Among other things, this addresses the problem raised above
concerning the original semantics of search: getting stuck because of lack of
knowledge on which transition to perform next. Note that our approach is
similar to that of [15]; however, there the strategy was stated in a completely
different language (robot programs), here we use ConGolog, i.e., the language
used to program the agent itself.

4.1. EPISTEMICALLY FEASIBLE DETERMINISTIC PROGRAMS

The first step in developing this approach is formalizing the notion mentioned
above of a deterministic program for which an executor will always have
enough information to continue the execution, i.e., will always know what the
next step to be performed is. We capture this notion formally by defining the
class of epistemically feasible deterministic programs (EFDPs) as follows:
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EFDP(d p,s)
def
= ∀d p′,s′.Trans∗(d p,s,d p′,s′) ⊃ LEFDP(d p′,s′)

LEFDP(d p,s)
def
=

Know(Final(d p,now)∧¬∃d p′,s′.Trans(d p,now,d p′,s′),s)∨
∃d p′.Know(¬Final(d p,now)∧UTrans(d p,now,d p′,now),s)∨
∃d p′,a.Know(¬Final(d p,now)∧UTrans(d p,now,d p′,do(a,now)),s)

UTrans(d p,s,d p′ ,s′)
def
=

Trans(d p,s,d p′ ,s′) ∧ ∀d p′′,s′′.Trans(d p,s,d p′′ ,s′′) ⊃ d p′′ = d p′∧ s′′ = s′

Thus to be an EFDP, a program must be such that all configurations reachable
from the initial program and situation are such that the program is a locally
epistemically feasible deterministic one (LEFDP). A program is an LEFDP in
a situation if the agent knows that it is currently Final and there are no further
transitions possible, or it knows what unique transition (with or without an
action) it can perform next.

Our original detailed program for getting on a flight getOnFlightDetailed

is an EFDP: the agent knows what action it must do first, go to the airport,
then it knows what to do next, check the departures screen, which will tell it
which gate the flight is at, and then it knows it must go to that gate, board
the flight, and then knows that it is done. If we delete the sensing action
checkDepartures from the program, then we no longer have an EFDP; the
agent no longer knows what action to do next at the test because it does not
know which gate the flight is at and the “then” and “else” branches of the
program involve different actions.

First, observe that even though an epistemically feasible deterministic
program is not required to terminate, the agent is guaranteed to know what
to do next at every step in its execution. As a consequence of that, online
executions of an epistemically feasible deterministic program can never get
to a configuration where the agent does not know what to do next and the
execution is stuck.

THEOREM 6. Let d p be such that D ∪T ∪E ∪ {Sensed[σ]} |=
EFDP(d p,end[σ]). Then, for each model M of D ∪T ∪E ∪ {Sensed[σ]},
there is only one complete online execution of d p from σ w.r.t. M and and
this execution is either non-terminating or successfully terminating.

Proof. First we show, by contradiction, that for all models M of
D ∪T ∪E ∪ {Sensed[σ]} all online executions of d p from σ w.r.t. M are
either non-terminating or successfully terminating.

Suppose there is a model M̄ and an online execution that gets stuck in an
online configuration (d pi,σi) where neither Final nor Trans to some subse-
quent configuration are entailed. This means that D ∪T ∪E∪{Sensed[σi]} 6|=
Final(d pi,σi) and there there are no terms d pi+1 and σi+1 to which configu-
ration (d pi,σi) can make a transition w.r.t. M̄.
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Now since we have an online execution w.r.t. M̄ reaching configuration
(d pi,σi), D ∪T ∪E ∪ {Sensed[σ]} |= Trans∗(d p,end[σ],d pi ,end[σi]) fol-
lows, hence since by hypothesis D ∪T ∪E ∪ {Sensed[σ]} entails
EFDP(d p,end[σ]), we have that D ∪T ∪E ∪ {Sensed[σi]} entails
LEFDP(d pi,end[σi]) and, thus, by definition of LEFDP we have:

D ∪T ∪E ∪{Sensed[σi]} |=
Know(Final(d pi,now)∧¬∃d p′,s′ Trans(d pi,now,d p′,s′),end[σi]) ∨
∃d p′Know(¬Final(d pi,now)∧UTrans(d pi,now,d p′,now),end[σi]) ∨
∃d p′,aKnow(¬Final(d pi,now)∧UTrans(d pi,now,d p′,do(a,now)),end[σi])

By Theorem 5, and the fact that it is possible to eliminate all references to
Final and Trans by equivalent objective formulas (Theorem 1), it is possible
to show that this implies that one of the logical implications below must
hold:

(a) D ∪T ∪E ∪{Sensed[σi]} |=
Know(Final(d pi,now)∧¬∃d p′,s′ Trans(d pi,now,d p′,s′),end[σi]),

(b) D ∪T ∪E ∪{Sensed[σi]} |=
∃d p′.Know(¬Final(d pi,now)∧UTrans(d pi,now,d p′,now),end[σi]),

(c) D ∪T ∪E ∪{Sensed[σi]} |=
∃d p′,a.Know(¬Final(d pi,now)∧

UTrans(d pi,now,d p′,do(a,now)),end[σi]).

Taking into account Theorem 4, and again using Theorem 1 to eliminate all
references to Trans and Final predicates, we have one of the following cases:

(a) D ∪T ∪E ∪{Sensed[σi]} |=
Know(Final(d pi,now)∧¬∃d p′,s′ Trans(d pi,now,d p′,s′),end[σi]),

(b) D ∪T ∪E∪{Sensed[σi]} |= Know(UTrans(d pi,now, ¯d p′,now),end[σi]),
for some ground program term ¯d p′,

(c) D ∪T ∪E ∪{Sensed[σi]} |= Know(UTrans(d pi,now, ¯d p′,do( ā,now)),
end[σi]), for some ground program term ¯d p′ and ground action term ā.

Lastly, by reflexivity of K one of the following cases applies:

(a) D ∪T ∪E ∪{Sensed[σi]} |= Final(d pi,end[σi]),

(b) D ∪T ∪E ∪{Sensed[σi]} |= UTrans(d pi,end[σi], ¯d p′,end[σi]),

(c) D ∪T ∪E ∪{Sensed[σi]} |= UTrans(d pi,end[σi], ¯d p′,do( ā,end[σi]).
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In case (a), the configuration (d pi,σi) is a final one. In case (b), the con-
figuration (d pi,σi) can make a legal non-action online execution step w.r.t.
M̄ to configuration ( ¯d p′,σi). Finally, in case (c), the configuration (d pi,σi)
can make a legal online step to ( ¯d p′,σi+1), such that σi+1 = σi · ( ā,µ), where
µ = 1 if M̄ |= SF( ā,end[σi]), and µ = 0, otherwise.

Therefore, in all three cases configuration (d pi,σi) is not stuck, i.e., it is
either final or it can evolve to another configuration, thus getting a contradic-
tion.

Next we show, again by contradiction, that for all models M of D ∪T ∪E ∪
{Sensed[σ]} there is only one complete execution of d p from σ w.r.t. M.

Assume that there are two different complete online executions EX1 and
EX2 of d p at σ w.r.t. a certain model M̄:

EX1 = (d p,σ),(d p1
1,σ

1
1), ...

EX2 = (d p,σ),(d p2
1,σ

2
1), ...

As EX1 is different from Ex2, then either EX1 is a prefix execution of EX2,
EX2 is a prefix execution of EX1, or for some i≥ 1 it is the case that (d p1

j ,σ1
j)=

(d p2
j ,σ2

j) for all j < i, but (d p1
i ,σ1

i ) 6= (d p2
i ,σ2

i ). Clearly, EX1 (EX2) is not
a complete execution in the first (second) case, because its last configuration
does have a transition and, given that it is a local epistemically feasible con-
figuration, it can never be final. Then, the only possible case is the third one.
However, in that case, we must have that:

D ∪T ∪E ∪{Sensed[σi−1]} |= Trans(d p1
i−1,end[σ1

i−1],d p1
i ,end[σ1

i ])

D ∪T ∪E ∪{Sensed[σi−1]} |= Trans(d p2
i−1,end[σ2

i−1],d p2
i ,end[σ2

i ])

where σi−1 = σ1
i−1 = σ2

i−1 and d pi−1 = d p1
i−1 = d p2

i−1. Because (d p1
i ,σ1

i ) 6=

(d p2
i ,σ2

i ), there is no unique transition, formally,

D ∪T ∪E ∪{Sensed[σi−1]} |= ¬∃d p′,s′.UTrans(d pi−1,end[σi−1],d p′,s′)
(1)

However, given that program d p is an EFDP at history σ, it is the case that
D ∪T ∪E ∪{Sensed[σi−1]} |= LEFDP(d pi−1,end[σi−1]). Observe that, by
Theorem 2, the agent knows of the possible two transitions for (d pi−1,σi−1)
at σi−1, and, as d pi−1 is a LEFDP at σi−1 the agent knows the configuration is
not a final one. By Theorems 4 and 1 there exists a ground program term ¯d p′

and a ground situation term s̄′ (with s̄′ = end[σi−1] or s̄′ = do( ā,end[σi−1])
for some ground action term ā), such that

D ∪T ∪E∪{Sensed[σi−1]} |= Know(UTrans(d pi−1,now, ¯d p′, s̄′),end[σi−1])

Then, D ∪T ∪E ∪ {Sensed[σi−1]} |= UTrans(d pi−1,end[σi−1], ¯d p′, s̄′) fol-
lows by the reflexivity of K, which contradicts (1). Thus, the third case is also
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not applicable, EX1 cannot be different from EX2, and there can only exist
one complete execution of d p at σ w.r.t. M̄.

The next theorem shows that for epistemically feasible deterministic pro-
grams, if it is entailed that the program can reach a final situation, then the
program can be successfully executed online whatever the sensing outcomes
may be.

THEOREM 7. Let d p be such that D ∪T ∪E ∪ {Sensed[σ]} entails
EFDP(d p,end[σ]). Then, D ∪T ∪E∪{Sensed[σ]} |= ∃s f .Do(d p,end[σ],s f )
if and only if for each model M of D ∪T ∪E ∪{Sensed[σ]}, the (only) com-
plete online execution of d p from σ w.r.t. M is successfully terminating.

Proof. ⇒ Because of Theorem 6 we know that in any model M, the (only)
complete online execution is either non-terminating or successful. We now
prove by contradiction that it cannot be non-terminating.

Suppose that, for some model M̄ of D ∪T ∪E ∪{Sensed[σ]}, there is a
non-terminating online execution (d p0 = d p,σ0 = σ), ...,(d pn,σn), .... Now,
for any i ≥ 0: M̄ |= Trans(d pi,end[σi],d pi+1,end[σi+1]). By Theorem 2, the
agent knows in M̄ of this transition for (d pi,σi) at σi. Moreover given that
d pti is a LEFDP at σi in M̄ (that is, M̄ |= LEFDP(d pi,end[σi])) the agent must
know that such transition is the only possible one and that the configuration
is not a final one in M̄. From there, using reflexivity of K we conclude that

M̄ |= UTrans(d pi,end[σi],d pi+1,end[σi+1])∧¬Final(d pi,end[σi])

In words, given that there is a transition from configuration (d pi,end[σi])
to configuration (d pi+1,end[σi+1]) for every i ≥ 0 plus the fact that each
configuration is a LEFDP one, then that transition is the only one possible
in M̄ and (d pi,end[σi]) is not a final in M̄. Since this holds for any arbitrary
i ≥ 0,

M̄ |= ∀d p′,s′.Trans∗(d p,end[σ],d p′,s′) ⊃¬Final(d p′,s′)

It follows then that M̄ |= ¬∃s f .Do(d p,end[σ],s f ), which contradicts the ini-
tial statement. Thus, the non-terminating complete online execution does not
exists.

⇐ We proceed again by contradiction. Suppose there is model M̄ of
D ∪T ∪E ∪{Sensed[σ]} such that M̄ |= ¬∃s′.Do(d p,end[σ],s′). By Theo-
rem 6, there is only one complete online execution of d p at σ w.r.t. model
M̄; and, by assumption, such execution is successfully terminating. Then,
by Lemma 1, M̄ satisfies each step of the online execution, including the
final terminating step. Therefore, M̄ |= ∃d p′,s′.Trans∗(d p,end[σ],d p′ ,s′)∧
Final(d p′,s′), i.e., M̄ |= ∃s′.Do(d p,end[σ],s′) thus getting a contradiction.
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4.2. SEMANTICS OF DELIBERATION STEPS

We now give the formal semantics of the deliberation steps. To denote these
steps in the program we introduce a deliberation operator ∆e, a new form of
the IndiGolog search operator discussed in Section 2.

We define the Trans and Final predicates for the new deliberation operator
as follows:

Trans(∆e(p),s,d p′,s′) ≡
∃d p.EFDP(d p,s)∧∃s f .Trans(d p,s,d p′ ,s′)∧Do(d p′,s′,s f )∧Do(p,s,s f )

Final(∆e(p),s) ≡ Final(p,s)

Thus, the axioms entail that there is a transition for ∆e(p) from a situation s if
and only if they entail that there is some epistemically feasible deterministic
program d p that reaches a Final situation of the original program p no matter
how sensing turns out (i.e., in every model of the axioms). Note also that
the remaining program after the transition, d p′, is what is left of d p; thus,
the agent commits to the strategy/EFDP found in the initial deliberation and
executes it.10 Note that we do not need to put d p′ inside a ∆e block, since it
is deterministic.

The following theorem shows that our semantics for the deliberation oper-
ator satisfies some basic requirements: if there is a transition for a deliberation
block in a history σ, then (1) the program in the deliberation block can reach a
Final situation in every model, and (2) so can ∆e(p), and moreover (3) ∆e(p)
can be successfully executed online whatever the sensing results are (thus, the
agent will never get to a configuration where it can no longer reach a Final
situation or does not know what to do next):

THEOREM 8. If D ∪T ∪E ∪ {Sensed[σ]} |= Trans(∆e(p),end[σ], p′,s′),
then

1. D ∪T ∪E ∪{Sensed[σ]} |= ∃s f .Do(p,end[σ],s f )

2. D ∪T ∪E ∪{Sensed[σ]} |= ∃s f .Do(∆e(p),end[σ],s f )

3. For each model M of D ∪T ∪E ∪{Sensed[σ]} all online executions from
(∆e(p),σ) w.r.t. M successfully terminate.

Proof. 1. and 2. follow immediately from the definition of Trans for ∆e.
For 3. consider that by the definition of Trans for ∆e, there exists a d p such
that D ∪T ∪E ∪ {Sensed[σ]} entails both EFDP(d p,end[σ]) and
∃s f , p′,s′.Trans(d p,end[σ], p′ ,s′)∧Do(p′,s′,s f ). The conditions of Theorem
7 are satisfied, and thus we have that all online executions from (d p,σ)

10 We discuss how this commitment to a given “strategy” can be relaxed when we address
execution monitoring in Section 7.
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are successfully terminating. Since these include all online executions from
(p′,σ′) with end[σ′] = s′, all online executions from (p′,σ′) must also be
successfully terminating. Hence the thesis follows.

5. Syntax-Based Accounts of EFDPs

In general, deliberating to find a way to execute a high-level program can be
very hard because it amounts to doing planning where the class of potential
plans is very general. It is thus natural to consider restricted classes of pro-
grams. Two particularly interesting such classes are: (i) programs that do not
perform sensing, which correspond to conformant plans11 (see e.g., [31]),
and (ii) programs that are guaranteed to terminate in a bounded number of
steps (i.e., do not involve any form of cycles), which correspond to condi-
tional plans (see e.g., [30, 1]). We will show that for these two classes, one
can restrict one’s attention to simple syntactically-defined classes of programs
without loss of generality. So if one is designing a deliberator/planner, one
might want to only consider programs from these classes.

5.1. TREE PROGRAMS

Let us define the class of (sense-branch) tree programs TREE with the fol-
lowing BNF rule:

d pt ::= nil | False? | a;d pt1 | True?;d pt1 | senseφ; if φ then d pt1 else d pt2

where a is any non-sensing action, and d pt1 and d pt2 are tree programs.
This class includes conditional programs where one can only test a condition
that has just been sensed (trivial tests False? and True? are introduced for
technical reasons). As one may expect, whenever such a program is exe-
cutable, it is also epistemically feasible — the agent always knows what to
do next. This is formalized in the next theorem.

THEOREM 9. Let d pt be a tree program, i.e., d pt ∈ TREE. Then, for all
histories σ, if D ∪T ∪E ∪{Sensed[σ]} |= ∃s f .Do(d pt,end[σ],s f ) then pro-
gram d pt is an EFDP at history σ, that is, D ∪T ∪E ∪ {Sensed[σ]} |=
EFDP(d pt,end[σ]).

Proof. By induction on the structure of d pt.
Base cases. For nil, it is known that nil is Final, so that D ∪T ∪E ∪

{Sensed[σ]} |= EFDP(nil,end[σ]) holds; for False?, the antecedent is false,
so the thesis holds.

11 We remind the reader that conformant plans are sequences of actions that, even under
incomplete information about the domain, are guaranteed to reach the desired goal.
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Inductive cases. Assume that the thesis holds for d pt1 and d pt2. Assume
that D ∪T ∪E ∪{Sensed[σ]} |= ∃s f .Do(d pt,end[σ],s f ).

For d pt = a;d pt1: D ∪T ∪E ∪{Sensed[σ]} |=∃s f .Do(a;d pt1,end[σ],s f )
implies that D ∪T ∪E ∪ {Sensed[σ]} |= ∃s f .Do(d pt1,do(a,end[σ]),s f ).
Since a is a non-sensing action, D s f |= Sensed[σ · (a,1)] ≡ Sensed[σ], so
we also have that D ∪T ∪E ∪Sensed[σ · (a,1)] entails ∃s f .Do(d pt1,end[σ ·
(a,1)],s f ). Thus, by the induction hypothesis, we have D ∪T ∪E∪{Sensed[σ ·
(a,1)]} |= EFDP(d pt1,end[σ ·(a,1)]). It follows then that the set D ∪T ∪E ∪
{Sensed[σ]} entails EFDP(d pt1,do(a,end[σ]). The initial assumption that
D ∪T ∪E ∪{Sensed[σ]} entails ∃s f .Do(a;d pt1,end[σ],s f ) also implies that
D ∪T ∪E ∪{Sensed[σ]} |= Poss(a,end[σ]) and this must be known by The-
orem 2, i.e., D ∪T ∪E ∪{Sensed[σ]} |= Know(Poss(a,now),end[σ]). Thus,
we have that

D ∪T ∪E ∪{Sensed[σ]} |=
Know(Trans(a;d pt1 ,now,d pt1,do(a,now)),end[σ])

It is also known that this is the only transition possible for a;d pt1 and
that this program is not final. So D ∪T ∪E ∪{Sensed[σ]} logically entails
LEFDP(a;d pt1,end[σ]). Then,

D ∪T ∪E ∪{Sensed[σ]} |= EFDP(a;d pt1,end[σ])

For d pt = True?;d pt1: the argument is similar, but simpler since the test
does not change the situation.

For d pt = senseφ; if φ then d pt1 else d pt2: Suppose that the sensing ac-
tion returns 1 and let σ1 = σ · (senseφ,1). Given that, the initial assumption
that D ∪T ∪E ∪ {Sensed[σ]} entails ∃s f .Do(d pt,end[σ],s f ) implies that
D ∪T ∪E ∪{Sensed[σ1]} |= ∃s f .Do(d pt1,end[σ1],s f ). Thus, by the induc-
tion hypothesis, D ∪T ∪E ∪{Sensed[σ1]} |= EFDP(d pt1,end[σ1]) holds. It
follows next that

D ∪T ∪E ∪{Sensed[σ]} |=
φ(do(senseφ,end[σ])) ⊃ EFDP(d pt1,do(senseφ,end[σ]))

By a similar argument, it also follows that we must have that

D ∪T ∪E ∪{Sensed[σ]} |=
¬φ(do(senseφ,end[σ])) ⊃ EFDP(d pt2,do(senseφ,end[σ]))

The initial assumption D ∪T ∪E∪{Sensed[σ]} |= ∃s f .Do(d pt,end[σ],s f )
also implies that D ∪T ∪E ∪{Sensed[σ]} |= Poss(senseφ,end[σ]) and this
must be known by Theorem 2, i.e., D ∪T ∪E ∪{Sensed[σ]} logically entails
Know(Poss(senseφ,now),end[σ]). Thus, we have that

D ∪T ∪E ∪{Sensed[σ]} |=
Know(Trans(d pt,now, if φ then d pt1 else d pt2,do(senseφ,now)),end[σ])
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It is also known that this is the only transition possible for d pt and that d pt
is not final, which implies D ∪T ∪E ∪{Sensed[σ]} |= LEFDP(d pt,end[σ]).
Thus, D ∪T ∪E ∪{Sensed[σ]} |= EFDP(d pt,end[σ]).

Observe that as a consequence of the theorem above and Theorem 7,
the online execution of d pt in σ is successfully terminating for all possible
sensing outcomes. It follows that the problem of finding a tree program that
yields an execution of a program in a deliberation block is the analogue in
our framework of conditional planning (under incomplete information) in the
standard setting [21, 30].

Next we show a quite strong result: tree programs are sufficient to express
any strategy where there is a known bound on the number of steps it needs
to terminate. That is, for any epistemically feasible deterministic program for
which this condition holds, there is a tree program that produces the same
executions:

THEOREM 10. For any program d p that is

1. an epistemically feasible deterministic program, i.e.,
D ∪T ∪E ∪{Sensed[σ]} |= EFDP(d p,end[σ]) and

2. such that there is a known bound on the number of steps it needs to
terminate, i.e., where there is an n such that

D ∪T ∪E ∪{Sensed[σ]} |=
∃p′,s′,k.k ≤ n∧Transk(d p,end[σ], p′,s′)∧Final(p′,s′)

there exists a tree program d pt ∈ TREE such that for each model M of the set
D ∪T ∪E ∪{Sensed[σ]}, the complete online execution of d p from σ with
respect to M and the complete online execution of d pt from σ with respect to
M successfully terminate in the same final history σM .

Proof. We construct the tree program d pt = m(d p,σ) from d p using the
following rules:

− m(d p,σ) = False? if D ∪T ∪E ∪ {Sensed[σ]} is inconsistent, other-
wise

− m(d p,σ) = nil if D ∪T ∪E ∪{Sensed[σ]} |= Final(d p,end[σ]), other-
wise

− m(d p,σ) = a;m(d p′,σ · (a,1)) iff

D ∪T ∪E ∪{Sensed[σ]} |= Trans(d p,end[σ],d p′ ,do(a,end[σ])

for some non-sensing action a,

semantdelib03.tex; 1/11/2003; 17:55; p.22



23

− m(d p,σ) = senseφ; if φ then m(d p′,σ · (senseφ,1))
else m(d p′,σ · (senseφ,0)) iff

D ∪T ∪E ∪{Sensed[σ]} |= Trans(d p,end[σ],d p′ ,do(senseφ,end[σ])

for some sensing action senseφ,

− m(d p,σ) = True?;m(d p′,σ) iff

D ∪T ∪E ∪{Sensed[σ]} |= Trans(d p,end[σ],d p′ ,end[σ])

It turns out that, under the hypothesis of the theorem, for all d p and all σ,
(d p,σ) is bisimilar to (m(d p,σ),σ) with respect to online executions. Indeed,
it is easy to check that the relation [(d p,σ),(m(d p,σ),σ)] is a bisimulation,
i.e., for all d p and σ, [(d p,σ),(m(d p,σ),σ)] implies that

− D ∪T ∪E ∪{Sensed[σ]} |= Final(d p,end[σ]) iff
D ∪T ∪E ∪{Sensed[σ]} |= Final(m(d p,σ),end[σ]),

− for all d p′, σ′ if
D ∪T ∪E ∪ {Sensed[σ]} |= Trans(d p,end[σ],d p′ ,end[σ′]) with
D ∪T ∪E ∪{Sensed[σ′]} consistent, then

D ∪T ∪E ∪{Sensed[σ]} |= Trans(m(d p,σ),end[σ],m(d p′ ,σ′),end[σ′])
and [(d p′,σ′),(m(d p′,σ′),σ′)],

− for all d p′, σ′ if
D ∪T ∪E∪{Sensed[σ]} |= Trans(m(d p,σ),end[σ],m(d p′ ,σ′),end[σ′])
with D ∪T ∪E ∪{Sensed[σ′]} consistent, then

D ∪T ∪E ∪{Sensed[σ]} |= Trans(d p,end[σ],d p′ ,end[σ′])

and [(d p′,σ′),(m(d p′,σ′),σ′)].

(By the way, note that in this definition, we do not require that histories
have sensing values that come from a fixed model of D ∪T ∪E∪{Sensed[σ]},
only that they remain consistent with D ∪T ∪E and the sensing values al-
ready encountered. In fact, bisimulation may hold even w.r.t. sensing out-
comes that are not possible w.r.t. D ∪T ∪E ∪ {Sensed[σ]}. However, for
programs that always terminate in a finite number of steps as assumed, the
histories considered will always be such that there is a model of D ∪T ∪E ∪
{Sensed[σ]} that generates them.)

Since by hypothesis D ∪T ∪E ∪{Sensed[σ] |=∃s f .Do(d p,end[σ],s f ) (in
a bounded number of steps, in fact), considering that d p is an EFDP, by
Theorem 7 for all models M of D ∪T ∪E ∪{Sensed[σ]} the (unique) online
execution of d p from σ w.r.t. M successfully terminates. Hence since (d p,σ)
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and (m(d p,σ),σ) are bisimilar, m(d p,σ) has the same online execution from
σ w.r.t. M (apart from the program appearing in the configurations) and the
two online executions successfully terminate in the same final history σM .

This theorem shows that if we restrict our attention to EFDPs that termi-
nate in a bounded number of steps, then we can further restrict our attention
to programs of a very specific syntactic form, without any loss in generality.
This may simplify the task of coming up with a successful strategy for a given
deliberation block.

5.2. LINEAR PROGRAMS

Let the class of linear programs LINE be defined by the following BNF rule:

d pl ::= nil | a;d pl1 | True?;d pl1

where a is any non-sensing action, and d pl1 is a linear program.
This class only includes sequences of actions or trivial tests. So whenever
such a plan is executable, then it is also epistemically feasible — the agent
always knows what to do next:

THEOREM 11. Let d pl be a linear program, i.e., d pl ∈ LINE. Then, for all
histories σ, if D ∪T ∪E ∪{Sensed[σ]} |= ∃s f .Do(d pl,end[σ],s f ) then d pl
is an EFDP at history σ, i.e., D ∪T ∪E∪{Sensed[σ]} |= EFDP(d pl,end[σ]).

Proof. This is a corollary of Theorem 9 for tree programs. Since lin-
ear programs are tree programs, the thesis follows immediately from this
theorem.

Again as a consequence of the theorem above and Theorem 7, the online
execution of (d pl,σ) is successfully terminating for all possible sensing out-
comes. Observe that the problem of finding a linear program that yields an ex-
ecution of a program in a deliberation block is the analogue in our framework
of conformant planning in the standard setting [31].

Next, we show that linear programs are sufficient to express any strategy
that does not perform sensing.

THEOREM 12. For any d p that does not include sensing actions, such that
D ∪T ∪E ∪{Sensed[σ]} |= EFDP(d p,end[σ]), there exists a linear program
d pl such that for each model M of D ∪T ∪E ∪{Sensed[σ]}, the complete
online execution of d p from σ w.r.t. M and the complete online execution of
d pl from σ w.r.t. M successfully terminate in the same history σm.

Proof. We show this using the same approach as for Theorem 10 for tree
programs. Since d p cannot contain sensing actions, the construction method
used in the proof of Theorem 10 produces a tree program that contains no
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branching and is in fact a linear program. Then, by the same argument as
used there, the thesis follows.

Observe that this implies that if no sensing is possible — for instance,
because there are no sensing actions — then linear programs are sufficient to
express every strategy.

Let ∆l be a deliberation operator that is axiomatized just as ∆e except that
we replace the requirement that d p be an epistemically feasible deterministic
program by the requirement that it be a linear program, i.e., where we use the
axiom (the LINE predicate is defined in the obvious way):

Trans(∆l(p),s,d pl ′,s′) ≡
∃d pl.LINE(d pl)∧∃s f .Trans(d pl,s,d pl ′ ,s′)∧Do(d pl ′,s′,s f )∧Do(p,s,s f )

Then, one can show that a program using this deliberation operator ∆l(p) can
make a transition in a history if and only if one can identify a sequence of
actions that is an execution of p in all models for the history:

THEOREM 13. There exists a situation s f such that

D ∪T ∪E ∪{Sensed[σ]} |= Do(p,end[σ],s f )

if and only if there is a d pl ∈ LINE and an s′ such that

D ∪T ∪E ∪{Sensed[σ]} |= Trans(∆l(p),end[σ],d pl,s′)
Proof. ⇐ By hypothesis there exists a d pl that is a LINE. If s′ = end[σ]

then d pl = true?;d pl ′ and if s′ = do(a,end[σ]), for some action a, and then
d pl = a;d pl ′. In both cases d pl ′ must be a LINE. In every model d pl ′ reaches
from s′ a final situation of the original program p. Observe that such a situ-
ation will be the same in every model since the sequence of actions starting
from s′ is fixed by d pl ′. It follows that the sequence of action done by d pl
starting from s reaches a situation s f such that D ∪T ∪E ∪{Sensed[σ]} |=
Do(p,end[σ],s f ).

⇒ If for some s f we have D ∪T ∪E ∪{Sensed[σ]} |= Do(p,end[σ],s f )
then the sequence of actions from end[σ] to s f is a LINE program, which
trivially satisfies the left-hand-side of the axiom for ∆l . Observe that if s f =
end[σ] then we can simply use the linear program True?;nil to satisfy the
left-hand side of the axiom for ∆l .

This provides the basis for a simple implementation.
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6. Implementation

Let us now examine how the deliberation construct can be implemented ac-
cording to the specification given above, i.e., by having the interpreter look for
an epistemically feasible deterministic program of a certain type, linear, tree,
etc. We also relate these implementations to earlier implementation proposals
for IndiGolog.

Instead of situations, our implementations use histories, which are lists
of pairs of actions and sensing outcomes since the initial situation. We as-
sume the following code is already available: (a) holds(P,H) implements
the evaluation procedure and states that formula P is true at history H; (b)
trans/4 and final/2 implement relations Trans and Final respectively; and
(c) senses(A,F) states that action A senses the truth value of fluent F.

The simplest type of implementation is one that only considers linear pro-
grams as potential strategies for executing the program in the deliberation
block, as in the specification of ∆l above. This will work if there is a solution
that does not do sensing. Here is the code in Prolog:

/* implementation using linear programs */
trans(delib_l(P),H,DPL1,H1) :-
buildLine(P,DPL,H), trans(DPL,H,DPL1,H1).

buildLine(P,[],H) :- final(P,H).
buildLine(P,[(true)?|DPL],H) :-
trans(P,H,P1,H), buildLine(P1,DPL,H).

buildLine(P,[A|DPL],H) :-
trans(P,H,P1,[(A,1)|H]),
not senses(A,_), /* A is not a sensing action */
buildLine(P1,DPL,[(A,1)|H]).

The buildLine(P,DPL,H) predicate basically looks for a sequence of transi-
tions that the given program P can perform in history H which is guaranteed to
lead to a final configuration; the transitions must not involve sensing actions,
which would be useless without branching (sensing outcomes for non-sensing
actions are assumed to be 1); the sequence of transitions found is returned as a
linear program DPL. This approach to implementing deliberation is essentially
that used in [8, 14, 7], as these assume that deliberation blocks do not contain
sensing actions.

A more general type of implementation is one that considers tree programs
as potential strategies for executing the program in the deliberation block,
assuming that binary sensing actions are available. This can be implemented
by generalizing the above as follows:

/* implementation using tree programs */
trans(delib_t(P),H,DPT1,H1) :-
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buildTree(P,DPT,H), trans(DPT,H,DPT1,H1).
buildTree(P,[],H) :- final(P,H).
buildTree(P,[(true)?|DPT],H) :-
trans(P,H,P1,H), buildTree(P1,DPT,H).

buildTree(P,[A,if(F,DPT1,DPT2)]) :-
trans(P,H,P1,[(A,_)|H]), senses(A,F),
buildTree(P1,DPT1,[(A,1)|H]),
buildTree(P1,DPT2,[(A,0)|H]).

buildTree(P,[A|DPT],H) :-
trans(P,H,P1,[(A,_)|H]), not senses(A,_),
buildTree(P1,DPT,[(A,1)|H]).

buildTree(P,(false)?,H) :- inconsistent(H).

inconsistent([(A,1)|H]) :-
senses(A,F), holds(neg(F),H) ; inconsistent(H).

inconsistent([(A,0)|H]) :-
senses(A,F), holds(F,H) ; inconsistent(H).

A transition is performed on a program delib_t(P) only if it is always pos-
sible to extend it into a complete execution of P. To ensure this, whenever
a binary sensing action is encountered, the code verifies the existence of
complete executions for both potential sensing outcomes 0 and 1 (3rd clause
of buildTree). For non-sensing actions, the sensing outcome is assumed to
be 1, and the existence of an execution is verified in this single case (4th
clause of buildTree). This implementation is similar to that of [5]. Both of
the above implementations are sound (see [4, 7] on techniques to prove this),
but not complete even assuming soundness and completeness of holds/2.
The incompleteness comes from the fact that they stick to the form of the
original program while the semantics does not. One example that brings this
out is: φ?;ψ?;a | ¬φ?;¬ψ?;a, where it is known that φ ≡ ψ. For our seman-
tics, the LINE program True?;True?;a is a strategy for executing it, but the
implementations fail to find it.

7. Deliberation with Execution Monitoring

So far, we have provided a formal account of plans that are suitable for an
agent capable of sensing the environment during the execution of a high-
level program. We have not addressed, though, another important feature of
complex environments with which a realistic agent needs to cope as well:
exogenous actions. Intuitively, an exogenous action is an action outside the
control of the agent, perhaps a natural event or an action performed by another
agent. Technically, these are primitive actions that may occur without being
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part of the user-specified program. It is not hard to imagine how one would
slightly alter the definition of online execution of Section 2 so as to allow for
the occurrence of exogenous actions after each legal transition. Nonetheless,
an exogenous action can potentially compromise the online execution of a
deliberation block. This is due to the fact that ∆e commits to a particular
EFDP which can turn out to be impossible to execute after the occurrence of
some interfering outside action. If there is another EFDP that could be used
instead to complete the execution of the deliberation block, we would like the
agent to switch to it.

To address this problem, the search operator defined in [14] implements
an execution monitoring mechanism. The idea is to recompute a search block
whenever the current plan has become invalid due to the occurrence of exoge-
nous actions during the incremental execution. The new search starts from the
original program and situation (this is important because often commitments
are made early on in the program’s execution, and these may have to be re-
vised when an exogenous change occurs) and ensures that the plan produced
is compatible with the already performed actions.

Based on [8, 14], one can come up with a clean and abstract formalization
of execution monitoring and replanning for our epistemic version of delibera-
tion described in Section 4.2. The idea is to avoid permanently committing to
a particular EFDP. Instead, we define a deliberation operator ∆em that moni-
tors the execution of the selected EFDP and replans when necessary, possibly
selecting an alternative EFDP to follow. The semantics of this monitored
deliberation construct goes as follows:

Trans(∆em(p),s, p′,s′) ≡
∃d p,d p′.EFDP(d p,s)∧ p′ = mnt(d p′,s′, p,s)∧

∃s f .Trans(d p,s,d p′ ,s′)∧Do(d p′,s′,s f )∧Do(p,s,s f )

Final(∆em(p),s) ≡ Final(p,s)

The main difference is in the remaining program which contains not only
the epistemically feasible strategy chosen, but also the original program p,
original situation s, and next expected situation s′. These components are
packaged using a new language construct mnt, which basically means that
the agent should monitor the execution of the selected strategy d p using the
original program and situation to replan when necessary.

The next step, then, is to define the semantics for the new “monitoring”
construct mnt. With that objective, we first introduce two auxiliary relations.
Relation perturbed(mnt(d p,se , pi,si),s) states whether the strategy d p has
just been perturbed in situation s by some exogenous action; pi and si rep-
resent the initial program and initial situation from where d p comes from,
whereas se represent the situation in which program d p is expected to exe-
cute in. There are obviously several ways to define when a strategy has been
perturbed. A sensible one is the following: a strategy has been perturbed if
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the exogenous actions that just occurred rule out a successful execution for
both the strategy and the original program of the deliberation block.

perturbed(mnt(d p,se , pi,si),s) ≡
se 6= s∧¬∃s f .[Do(d p,s,s f )∧Do(pi ‖ pex,si,s f )]

Above we make use of the special program pex
def
=(πa.Exo(a)?;a)∗ to allow

for a legal sequence of exogenous actions (see [4]). Also, observe that a strat-
egy can be perturbed only if an action outside the strategy occurred, in which
case the actual situation s would differ from the expected situation se. Thus
in practice, there is no need to check for perturbation unless an exogenous
action or an action other than that performed by the chosen strategy occurs.

The next auxiliary relation is used to calculate a recovered strategy d pr

when the current one d p was perturbed in situation s. A sensible definition
for it is:

recover(mnt(d p,se , pi,si),s,d pr) ≡
∃p′i.Trans∗(pi ‖ pex,si, p′i ‖ pex,s) ∧
EFDP(d pr,s)∧∃s f .Do(d pr,s,s f )∧Do(p′i,s,s f )

Observe that the above definition may end up choosing an alternative
epistemically feasible strategy than the one chosen before. In a nutshell, a
new recovered strategy is an epistemically feasible one that is able to “solve”
the original program pi while accounting for every action executed so far,
either by the deliberation block or exogenous, since the beginning of the
deliberation block.

We now have all the machinery needed to define the semantics for the
monitoring construct mnt:

Trans(mnt(d p,se, pi,si),s, p′,s′) ≡
[¬perturbed(mnt(d p,se , pi,si),s) ∧
∃d p′.Trans(d p,s,d p′ ,s′)∧ p′ = mnt(d p′,s′, pi,si)]∨

[perturbed(mnt(d p,se , pi,si),s) ∧
∃d pr.recover(mnt(d p,se , pi,si),s,d pr) ∧

∃d p′.Trans(d pr ,s,d p′,s′)∧ p′ = mnt(d p′,s′, pi,si)]

Final(mnt(d p,se, pi,si),s) ≡
[¬perturbed(mnt(d p,se , pi,si),s) ∧ Final(d p,s)] ∨
[perturbed(mnt(d p,se , pi,si),s)∧Do(pi ‖ pex,si,s)]

For Trans, we have two possibilities: (i) if the strategy has not been per-
turbed, then we continue its execution by performing one step and updating
the next expected situation; (ii) if the strategy has just been perturbed, a recov-
ered new strategy d pr is computed and the execution continues with respect to
this alternative strategy. It is important to note that the original program and
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situation are always kept throughout the whole execution of a deliberation
block. In that way, the recovery process can be as general as possible. The
case for Final is simpler: (i) if the strategy has not been perturbed, then we
check whether the strategy is final in the actual situation; (ii) if the strategy
has been perturbed, then there is a chance that the original program might be
terminating in the current situation and we check for this.

In summary, deliberation can be naturally integrated with execution mon-
itoring in order to cope with exogenous actions that make the chosen strategy
unsuitable.

8. Conclusion

In this paper, we developed an account of the kind of deliberation that an
agent that is doing planning or executing high-level programs under incom-
plete information must be able to perform. The deliberator’s job is to produce
a kind of plan that does not itself require deliberation to interpret. We char-
acterized these as epistemically feasible programs: programs for which the
executing agent, at every stage of execution, by virtue of what it knew initially
and the subsequent readings of its sensors, always knows what step to take
next towards the goal of completing the entire program. We formalized this
notion and characterized deliberation in the IndiGolog agent programming
language in terms of it. We have also shown that for certain classes of prob-
lems, which correspond to conformant planning and conditional planning,
the search for epistemically feasible programs can be limited to programs of
a simple syntactic form.

There has been a lot of work in the past on formalizing notions of epis-
temically feasible plan and achievability of goals, e.g. [20, 2, 13, 15], and our
accounts builds on this. However, our account differs from previous work on
several aspects. First, we model the plans that are the result of deliberation
as ordinary programs that satisfy certain semantic criteria, i.e. are epistemi-
cally feasible deterministic programs. This means that after deliberation, such
plans can be handled by the existing on-line executor for the language. They
do not belong to a different “plan language” as in [15], and are not syntac-
tically restricted as in most work on planning with incomplete information.
Our proposal differs from that in [2], in which there is no characterization
of the result of deliberation other than as a semantic object (a relation over
situations), and this also applies to [13] and most other accounts of goal
achievability. Secondly, we have shown how deliberation can be viewed as
a part of agent program execution, and our semantics for deliberation is inte-
grated within the transition system semantics of our programming language.
Thirdly, we show how one can also incorporate execution monitoring and
replanning to cope with a changing environment. Many agent applications re-
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quire planning, and often involve incomplete information and sensing. In this
work, we try to show how one can develop an agent programming language,
IndiGolog, that is a convenient tool for this.

As far as we know, the only other agent programming language that at-
tempts to support planning under incomplete information is FLUX [32, 33].
Thielscher’s FLUX agent programming framework supports online execu-
tion, sensing, and planning for agents with open world knowledge bases with
disjunctive formulas, with the restriction that only finitely many facts are
known to be true. It is implemented using constraint logic programming tech-
niques which, together with the Fluent Calculus state-based approach, yields
good computational properties in terms of execution time. FLUX though,
only does a restricted form of conditional planning and no results are proven
regarding the correctness of the outcome of its deliberation mechanism. Also,
the programming framework is defined somewhat informally and it is not
clear exactly what range of planning problems can be handled.

McIlraith and Son [19] have used Golog to model web services and per-
form service customization and composition. They also formalize a notion of
“self-sufficient program” that is similar to that of an EFDPs; however their
account is incomplete for programs that involve indefinite iteration (such as
the tree chopping example of [13]) and more sensitive to the program’s syntax
than ours. It would be interesting to evaluate the effectiveness of IndiGolog’s
planning capabilities in such applications.

Many problems and lines of research remain open. In this paper, we have
only dealt with binary sensing actions. However, the account of delibera-
tion developed in Section 4 and its extension to provide execution moni-
toring in Section 7 do not rely on this restriction and apply unchanged to
theories with sensing actions that have even an infinite number of possible
sensing outcomes.12 This comes from the fact that our characterization of
“good execution strategies” through the notion of EFDP is not syntactic,
only requiring the agent to know what action to do next at every step. The
results of Section 5.1 showing that tree programs are sufficient to solve any
planning/deliberation problem where there is some strategy that solves the
problem in a bounded number of steps also generalize to domains involving
sensing actions with non-binary but finitely many outcomes; this is easy to
see given that any such sensing action can be encoded as a sequence binary
sensing actions that read the outcome one bit at a time (one could of course
extend the class of tree programs with a non-binary branching structure to
avoid the need for such an encoding). Whether a similar characterization can
be obtained for sensing actions with an infinite number of possible outcomes
is an open problem. While the above holds in principle, as soon as the num-
ber of sensing outcomes is more than a few, conditional planning becomes

12 One can introduce non-binary sensing actions in our framework as in [29].
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impractical without advice from the programmer as to what conditions the
plan should branch on [11, 32]. In [27], a search construct for IndiGolog that
generates conditional plans involving non-binary sensing actions by relying
on such programmer advice is developed. This approach seems very com-
patible with ours and it would be interesting to formalize it as a special case
of our account of deliberation. In [28], the search operator is combined with
declarative goals to provide a planning account which mixes both procedural
and declarative notions of action. Roughly speaking, the new (rational) search
operator looks for the “best” EFDP possible w.r.t. some set of (prioritized)
goals. There are also more general theories of sensing, such as that of [6]
which deals with online sensors that always provide values and situations
where the law of inertia is not always applicable. In [7], a search operator for
such theories is developed. It would be worthwhile examining whether this
setting could also be handled within our account of deliberation. As well, one
could look for syntactic characterizations for certain classes of epistemically
feasible deterministic programs in this setting.

Also related to the work presented here is [12], where a similar approach
is used to develop an account of epistemic feasibility for multiagent system
specifications, expressed in a version of ConGolog extended with knowledge
and goal attitudes. In [3], we investigate a non-epistemic account of delib-
eration that is more easily related to previous work on agent programming
languages and draw some lessons.
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Appendix

A. Proofs

Recall from Section 2 that D denotes the set of axioms defining an underlying theory
of action, T denotes the set of axioms for Trans and Final, and E stands for the set
of axioms needed for the encoding of programs as first-order terms (see [4].)

Also, we will be using two functions defined in [25] for performing regression.
First, ρ1(φ(now),A) stands for the one-step regression of formula φ(now) through
action A. Second, ρ(φ(now),end[σ]) stands for the full regression of formula φ(now)
through situation end[σ].

For our proofs, we will be using some generalized versions of existing results
proven by Reiter [25] (Chapter 11). Roughly speaking, we will be adding the set of
axioms E for the encoding of programs as first-order terms into these existing results,
and the results in [25] should still be valid as adding E only produces a conservative
extension that defines the new program sort.

We do not provide detailed proofs of these results since the proofs are long,
laborious, and of limited interest. But let us point out that the following three results
hold because of the following reasons: (i) program terms and variables can only be
mentioned in objective formulas as arguments of equality terms; (ii) given that every
object and every action has a name in the language, it follows (because of E) that ev-
ery possible program must have a name as well; (iii) E ∪D una∪{ψ(S0)} decides all
equalities sentences given that Duna ∪{ψ(S0)} decides all equalities sentences that
mention no program term or variable; and (iv) it is possible to obtain a generalized
version of the “Regression Theorem with Knowledge” (Theorem 11.6.3 in [25]) in
which E is added to the set of underlying axioms and equality among program terms
are permitted in regressable formulas. Point (iv) relies on the fact that any model
of D can be extended to satisfy E ∪D by Theorem A.1 in [4], and we only use its
instance w.r.t. the initial situation S0.
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LEMMA 2 (Generalization of Lemma 11.7.2 in [25]). If φ(now) is an objective for-
mula, then

E ∪D |= Know(φ(now),S0) iff E ∪K Init ∪Duna ∪DS0 |= Know(φ(now),S0)

LEMMA 3 (Generalization of Lemma 11.7.3 in [25]). Suppose that φ(now) is an ob-
jective sentence, and that DS0 = {Know(ψ(now),S0)} where ψ(now) is objective.
Then,

E ∪D |= Know(φ(now),S0) iff E ∪Duna ∪{ψ(S0)} |= φ(S0)

LEMMA 4 (Generalization of Lemma 11.7.12 in [25]). Suppose that φ0(now), ...,
φn(now) are objective sentences, that DS0 = {Know(ψ(now),S0)} where ψ(now) is
objective, and that E ∪Duna∪ψ(S0) decides all equality sentences. Suppose further
that

E ∪D |= φ0(S0)∨Know(φ1(now),S0)∨ ...∨Know(φn(now),S0)

Then for some 0 ≤ i ≤ n, E ∪D |= Know(φi(now),S0)

A.1. ADDITIONAL LEMMAS

LEMMA 5. Let ψ(now) be an objective formula. If E ∪Duna ∪{ψ(S0)} is satisfi-
able, then it is satisfiable in a model M such that for every object/action/program ele-
ment d in the object/action/program universe of M, there is an object/action/program
term t in the language such that [t]M = d.

Proof. For objects and actions, the Lemma follows directly from assumptions 9
(domain closure and unique names for objects) and 8 (finitely many action types) in
Section 3. Objects are identified with a set of well-defined standard names; actions
are build from (finitely many) action functions and the objects.

For programs, it follows directly from the fact that E has a second order axiom
closing the set of programs to be exactly the one constructed from primitive actions
and a finite set of language constructs (if, while, pick, etc.).

LEMMA 6 (Base case of Theorem 4). Let φ(~x,now) be an objective formula with
non-situation free variables~x (that is, object, action, or program variables.)
Then, D ∪E |= ∃~x.Know(φ(~x,now),S0) if and only if there are ground terms~t such
that D ∪E |= Know(φ(~t ,now),S0)

Proof. ⇐) This direction is trivial.
⇒) Without loss of generality, we assume~x = x. Let to

1 , to
2 , ... be an enumeration

of object terms, let ta
1 , ta

2 , ... be an enumeration of action terms, and t p
1 , t p

2 , ... be an
enumeration of program terms. In general, all three enumerations will be infinite as
there are infinite terms that can be built from one constant and one function.

We can then simplify these enumerations by grouping terms that are seen equal
w.r.t. the underlying theory. That is, we can assume to

1, t
o
2, ... is an enumeration of dif-

ferent equivalences classes among ground object terms such that two object terms t o
i

and to
j are in the same equivalence class iff Duna∪ψ(S0) |= ti = t j. Clearly, the whole

set of possible object terms is perfectly partitioned because D una ∪ψ(S0) decides
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equality over object sentences. An analogous argument will lead us to an enumera-
tion ta

1, t
a
2, ... is an enumeration of different equivalences classes among ground action

terms. Lastly, the “decides equality” property is automatically lifted to program terms
whenever we take into consideration the set of axioms E defining how program
terms are built, and, therefore, we can construct an enumeration t p

1 , t p
2 , ... of different

equivalences classes among ground program terms.
Assume next that for every i ≥ 1, D ∪E 6|= Know(φ(ti,now),S0) where ti is of

the type of variable x (i.e., ti stands for a term in the object, action, or program
enumeration.) By Lemma 3, E ∪Duna ∪ψ(S0) 6|= {φ(ti,S0)}, for every i ≥ 1 where
DS0 = {Know(ψ(now),S0)}. Thus, E ∪Duna∪ψ(S0)∪{¬φ(ti,S0)} is satisfiable for
for every i ≥ 1. Moreover, by Lemma 5, E ∪Duna∪ψ(S0)∪{¬φ(ti,S0)} is satisfiable
in a model Mi where every element in the object, action, and program sorts has a
name in the language.

With all this, we can safely assume that, for any Mi, the object sort of Mi is
DO = {to

1, t
o
2, ..} and that [to]Mi = to. Similarly, we can also assume that the action

sort of Mi is DA = {ta
1, t

a
2, ..} and that [ta]Mi = ta; and, finally, that the program sort

of Mi is DP = {t p
1 , t p

2 , ..} and that [t p]Mi = t p.
Intuitively, with these assumptions on the form of Mi, all models Mi will coin-

cide exactly on the way they interpret every term, and, therefore, we will be able to
amalgamate all them together in a single big model.

Next, we are to show that, based on all these models M1,M2, ... (one for each
object/action/program term), we can construct an amalgamated model M∗ of E ∪
Duna ∪ DS0 such that the following holds: M∗ |= ¬∃x.Know(φ(x,now),S0). That
would imply that E ∪Duna∪DS0 ∪K Init 6|= ∃x.Know(φ(x,now),S0) and, by Lemma
2, D ∪E 6|= ∃x.Know(φ(x,now),S0) would follow (i.e., a contradiction).

Let us construct a model M∗ as follows:

(a) S0,S1,S2, ... are all initial situations in the sort situation of M∗; [st ]
M∗

= st for
every possible situation term st ; and M∗ |= K(u′,u) iff u = S0 and u′ = Si or
u = u′, for i ≥ 0;

(b) M∗’s domains for objects, actions, and programs are DO, DA, and DP respec-
tively;

(c) [to]M
∗
= to, [ta]M

∗
= ta, and [t p]M

∗
= t p, that is M∗ interprets non-situation terms

as any Mi does;

(d) for any i ≥ 0, if t1, ..., tn are non-situation domain elements, and P is an n-place
relational fluent, then M ∗ |= P(t1, ..., tn,Si) iff Mi |= P(t1, ..., tn,S0);

(e) assign the rest arbitrarily (for instance, the interpretation of relational fluents in
situations other than the initial ones.)

Intuitively, each model Mi is recast as a K-accessible initial situation in model M∗.
Notice that point (c) guarantees that for any two non-situation terms t1 and t2, M∗ |=
t1 = t2 iff Mi |= t1 = t2 for any arbitrary i ≥ 1. (*) Similarly, point (d) is well-defined
as well as there are no functional fluents and M ∗ has the same object, action, and
program sorts as each Mi.

It is not hard to see that for any objective sentence α(now), M∗ |= α(Si) iff
Mi |= α(S0) (by induction on the structure of α(s) with the base case being atomic
formulas, that is, either a relational fluent or an equality term.) (**)
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Next, we are to prove that M∗ |= E ∪Duna ∪DS0 ∪K Init . First, given that Mi |=
ψ(S0) for all i ≥ 1, M∗ |= ψ(Si) by (**). Hence, M∗ |= ∀s.K(s,S0) ⊃ ψ(s) and
M∗ |= DS0 . Second, M∗ |= K Init due to point (a) above. Finally, M∗ |= Duna be-
cause Mi |= Duna for all i ≥ 1 and point (*) above. Third, M∗ |= E because M∗

domain for programs is DP and the interpretation of all programs in DP and pro-
gram terms in the language are exactly the same as in any Mi. Putting all together,
M∗ |= E ∪Duna ∪DS0 ∪K Init .

Lastly, let us prove M∗ |= ¬∃x.Know(φ(x,now),S0). Given that Mi |= ¬φ(ti,S0)
and point (d) above, M∗ |= ¬φ(ti,Si) is true for every i ≥ 1. In English, this means
that for every possible non-situation term t, there is an accessible world in which
φ(t,now) does not hold. In particular, if x is an object variable, then for every object
element to ∈DO, there is an initial accessible situation Sto such that M∗ |=¬φ(to,Sto);
if x is an action variable, then for every action element ta ∈ DA, there is an initial
accessible situation Sta such that M∗ |= ¬φ(ta,Sta); and if x is a program variable,
then for every program element t p ∈ DP, there is an initial accessible situation St p

such that M∗ |= ¬φ(t p,St p)
Therefore, since x is either an object, action, or program variable, we have that

M∗ |= ∀x∃s.K(s,S0)∧¬φ(x,s). In other words, M∗ |=¬∃x.Know(φ(x,now),S0); and,
hence, E ∪ Duna ∪ DS0 ∪ K Init 6|= ∃x.Know(φ(x,now),S0) so that, by Lemma 2,
D ∪E 6|= ∃x.Know(φ(x,now),S0) follows. As this contradicts the initial statement, it
has to be the case that there exists some (object, action, or program correspondingly)
term t such that D ∪E |= Know(φ(t,now),S0).

A.2. PROOFS OF SECTION 3

Proof of Theorem 1. We prove this by induction on the structure of p(~x), taking nil,
(β)?, and primitive actions as base cases.

Base Case: Take for instance p(~x) = A(~x) where A is a primitive action. Then, we
take φ f (~x,s) = φtt(~x, p′,s) = False and φta(~x, p′,a,s) = Π(~x,s)∧ p′ = nil∧a = A(~x),
where Π(~x,s) is the precondition of action type A.

Take next the case where p(~x) = (β(x))?, that is a test program. Then, we take
φ f (~x,s) = φta(~x, p′,a,s) = FALSE and φtt (~x, p′,s) = β(~x,s)∧ p′ = nil.

Induction Step: We only show the case for sequence, pick for an action, and
prioritized concurrency.

Suppose p(~x) = p1(~x); p2(~x). Then, we take

φ f (~x,s) = φp1
f (~x,s)∧φp2

f (~x,s)

φtt (~x, p′,s) = [∃p′′.p′ = p′′; p2(~x)∧φp1
tt (~x, p′′,s)]∨ [φp1

f (~x,s)∧φp2
tt (~x, p′,s)]

φta(~x, p′,a,s) = [∃p′′.p′ = p′′; p2(~x)∧φp1
ta (~x, p′′,a,s)]∨ [φp1

f (~x,s)∧φp2
ta (~x, p′,a,s)]

where φpi
f (~x,s), φpi

ta(~x, p′,a,s) and φpi
tt (~x,s) for i = 1 and i = 2 come from the induc-

tion hypothesis.
Suppose p(~x) = πa.p1(a,~x). Given that we have a finite set of action types (as-

sumption 6 in Section 3), we can rewrite program p(~x) as p1(A1(~x),~x)|...|p1(An(~x),~x)
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assuming A1, ...,An are all the action types available. The rest of the proof is similar
to the previous case.

Lastly, suppose that p(~x) = p1(~x) 〉〉 p1(~x). Then, we take

φ f (~x,s) = φp1
f (~x,s)∧φp2

f (~x,s)

φtt (~x, p′,s) = [∃p′′.p′ = p′′ 〉〉 p2(~x)∧φp1
tt (~x, p′′,s)] ∨

[∃p′′.p′ = p1(~x) 〉〉 p′′∧φp2
tt (~x, p′′,s) ∧

¬∃p′′′.φp1
tt (~x, p′′′,s)∨∃aφp1

ta (~x, p′′′,a,s)]

φta(~x, p′,a,s) = [∃p′′.p′ = p′′ 〉〉 p2(~x)∧φp1
ta (~x, p′′,a,s)] ∨

[∃p′′.p′ = p1(~x) 〉〉 p′′∧φp2
ta (~x, p′′,a,s) ∧

¬∃p′′′.φp1
tt (~x, p′′′,s)∨∃aφp1

ta (~x, p′′′,a,s)]

where φpi
f (~x,s) φpi

ta(~x, p′,a,s), and φpi
tt (~x,s) for i = 1 and i = 2 come from the induc-

tion hypothesis. Note that this relies on the fact that

D ∪T ∪E |=
∃p′,s′ Trans(p,s, p′,s′) ≡ ∃p′ Trans(p,s, p′,s)∨∃p′,aTrans(p,s, p′,do(a,s))

which follows from D ∪T ∪E |= Trans(p,s, p′,s′) ⊃ s′ = s∨∃as′ = do(a,s). The
latter is easy to prove by induction on programs.

Proof of Theorem 2.
⇐ This way follows easily from the fact that reflexivity of K propagates through

action from the initial situation.
⇒ We prove this direction by induction on the length of σ. For the base case, take

σ to be the initial history and suppose D ∪E |= φ(S0) holds. Then, DS0 ∪K Init ∪E ∪
Duna |= φ(S0) (i.e., Dap,Dss,Ds f and the foundational axioms can all be ignored
since the formula in question only talks about S0). Then, DS0 ∪K Init ∪E ∪Duna ∪
{ψ(S0)} |= φ(S0), where DS0 = Know(ψ(now),S0). Finally, since φ(S0) is objective
we can safely drop both DS0 and K Init and, hence, E ∪Duna ∪{ψ(S0)} |= φ(S0). At
this point, we can directly appeal to Lemma 3.

Assume next that σ+ = σ · (A,µ) for some ground action A and history σ of
length k. Consider the case where A = senseψ(~t) and µ = 1. Then Sensed[σ+] =
Sensed[σ]∧ψ(~t,end[σ]). We have that

D ∪E ∪{Sensed[σ+]} |= φ(end[σ+])

By the successor state axioms, it follows that

D ∪E ∪{Sensed[σ+]} |= ρ1(φ(now),senseψ(~t))[end[σ]]

Since Sensed[σ+] = Sensed[σ]∧ψ(~t,end[σ]), it follows that

D ∪E ∪{Sensed[σ]} |= ψ(~t,end[σ]) ⊃ ρ1(φ(now),senseψ(~t))[end[σ]]

By the induction hypothesis, we then have that

D ∪E ∪{Sensed[σ]} |= Know(ψ(~t,now) ⊃ ρ1(φ(now),senseψ(~t)),end[σ])
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and thus also that

D ∪E ∪{Sensed[σ+]} |= Know(ψ(~t,now) ⊃ ρ1(φ(now),senseψ(~t)),end[σ])

Then by Proposition 11.6.2 in [25], it easy to see that

D ∪E ∪{Sensed[σ+]} |= Know(φ(now),end[σ+])

The case where A = senseψ(~t) and µ = 0 is similar.
Now consider the case where A is a non-sensing action. Then µ = 1 and D s f |=

Sensed[σ+] ≡ Sensed[σ]. We have that

D ∪E ∪{Sensed[σ+]} |= φ(end[σ+])

By the successor state axioms, it follows that

D ∪E ∪{Sensed[σ+]} |= ρ1(φ(now),A)[end[σ]]

Since Ds f |= Sensed[σ+] ≡ Sensed[σ], it follows that

D ∪E ∪{Sensed[σ]} |= ρ1(φ(now),A)[end[σ]]

By the induction hypothesis, we then have that

D ∪E ∪{Sensed[σ]} |= Know(ρ1(φ(now),A),end[σ])

and thus also that

D ∪E ∪{Sensed[σ+]} |= Know(ρ1(φ(now),A),end[σ])

Then by Proposition 11.6.1 in [25], we have that

D ∪E ∪{Sensed[σ+]} |= Know(φ(now),end[σ+])

Proof of Theorem 3. a ⇐) This direction is trivial.
⇒) For simplicity, we prove this for two disjuncts, that is for n = 2. The proof

can be easily extended to an arbitrary n.
The proof goes by induction on the length of the history. The base case, that is,

when σ is the initial history, follows from Lemma 4.
Next, assume that the Theorem holds for any history σ of length ≤ k. Suppose

that σ+ = σ · (A,1) for some ground action A and history σ of length k (the case for
σ+ = σ · (A,0) is similar.) Suppose further that

D ∪E ∪{Sensed[σ+]} |= Know(φ1(now),end[σ+])∨Know(φ2(now),end[σ+])

Using Proposition 11.6.2 in [25], the fact that σ+ = σ · (A,1), and the fact that
Sensed[σ+] = Sensed[σ]∪{ψ(end[σ])} we conclude that

D ∪E ∪{Sensed[σ+]} |=
Know(φ1(now),end[σ+]) ≡ Know(ψ(now) ⊃ ρ1(φ1(now),A),end[σ])

(2)

D ∪E ∪{Sensed[σ+]} |=
Know(φ2(now),end[σ+]) ≡ Know(ψ(now) ⊃ ρ1(φ2(now),A),end[σ])

(3)
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Therefore,

D ∪E ∪{Sensed[σ+]} |= Know(ψ(now) ⊃ ρ1(φ1(now),A),end[σ]) ∨
Know(ψ(now) ⊃ ρ1(φ2(now),A),end[σ])

(4)

At the same time, by Lemma 11.7.10 in [25], there is an objective formula ψ∗(now)
(ψ∗(now) = ρ(Sensed[σ],end[σ])⊃ ρ(ψ,end[σ])) such that

D ∪E ∪{Sensed[σ+]} |= Know(ψ(now),end[σ]) ≡ Know(ψ∗(now),S0) (5)

In other words, coming to know that ψ holds at history σ is equivalent to coming to
know that ψ∗ holds initially.

Next, we define D∗ to be like D, but with ψ∗(now) added to the the initial
database DS0 , that is, if DS0 = {Know(ψ0(now),S0)} then D∗

S0
= {Know(ψ0(now)∧

ψ∗(now),S0)}. Let us argue that D ∪E ∪ Sensed[σ+] and D∗∪E ∪ Sensed[σ] are
equivalent sets of axioms. First, observe that since D ∪E∪{Sensed[σ+]} |= ψ(end[σ]),
then D ∪E∪{Sensed[σ+]} |= Know(ψ(now),end[σ]) by Theorem 2. By (5), D ∪E∪
{Sensed[σ+]} |= Know(ψ∗(now),S0). Thus, D ∪E ∪ Sensed[σ+] logically entails
D∗∪E ∪Sensed[σ].

Moreover, by Lemma 11.7.10 in [25], we know that the following holds:

D∗∪E ∪{Sensed[σ]} |= Know(ψ(now),end[σ]) ≡ Know(ψ∗(now),S0)

and because D∗∪E |= Know(ψ∗(now),S0) we conclude that

D∗∪E ∪{Sensed[σ]} |= Know(ψ(now),end[σ])

Using Theorem 2 we get that

D∗∪E ∪{Sensed[σ]} |= ψ(end[σ])

and D∗∪E ∪Sensed[σ] |= D ∪E ∪Sensed[σ+] applies. Hence, D ∪E ∪Sensed[σ+]
and D∗∪E ∪Sensed[σ] are equivalent sets of axioms.

As a consequence of this and (4) the following holds:

D∗∪E ∪{Sensed[σ]} |= Know(ψ(now) ⊃ ρ1(φ1(now),A),end[σ]) ∨
Know(ψ(now) ⊃ ρ1(φ2(now),A),end[σ])

Given that ψ∗(now), ψ(now) ⊃ ρ1(φ1(now),A), and ψ(now) ⊃ ρ1(φ2(now),A) are
objective, and that σ is of length k, we can apply the induction hypothesis: hence,
one of the following two cases holds:

(i) D∗∪E ∪{Sensed[σ]} |= Know(ψ(now) ⊃ ρ1(φ1(now),A),end[σ]);

(ii) D∗∪E ∪{Sensed[σ]} |= Know(ψ(now) ⊃ ρ1(φ2(now),A),end[σ]).

Assume (i) holds. Again, as D ∪E ∪ Sensed[σ+] and D∗∪E ∪ Sensed[σ] are
equivalent set of axioms, we get

D ∪E ∪{Sensed[σ+]} |= Know(ψ(now) ⊃ ρ1(φ1(now),A),end[σ])

By Proposition 11.6.2. in [25], and (2),

D ∪E ∪{Sensed[σ+]} |= Know(φ1(now),end[σ+])
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The case for (ii) is similar and the theorem follows.

Proof of Theorem 4. ⇐) This direction is trivial.
⇒) The proof goes by induction on the length of the history. The base case, that

is, when σ is the initial history, corresponds to Lemma 6 above.
Assume that the Theorem holds for any history σ of length ≤ k. Suppose that

σ+ = σ · (A,1) for some ground action A and history σ of length k (the case for
σ+ = σ · (A,0) is analogous.) Suppose further that

D ∪E ∪{Sensed[σ+]} |= ∃~x.Know(φ(~x,now),end[σ+])

From Proposition 11.6.2 in [25], the fact that σ+ = σ · (A,1), and the fact that
Sensed[σ+] = Sensed[σ]∧ψ(end[σ]), we have that

D ∪E ∪{Sensed[σ+]} |=
∃~x.Know(φ(~x,now),end[σ+]) ≡ ∃x.Know(ψ(now) ⊃ ρ1(φ(~x,now),A),end[σ])

(6)
Therefore,

D ∪E ∪{Sensed[σ+]} |= ∃x.Know(ψ(now) ⊃ ρ1(φ(~x,now),A),end[σ]) (7)

At the same time, by Lemma 11.7.10 in [25], there is some formula ψ∗(now)
(ψ∗(now) = ρ(Sensed[σ],end[σ])⊃ ρ(ψ,end[σ])) such that

D ∪E ∪{Sensed[σ+]} |= Know(ψ(now),σ) ≡ Know(ψ∗(now),S0) (8)

In other words, coming to know that ψ holds at history σ is equivalent to coming to
know that ψ∗ holds initially.

Next, we define D∗ to be like D, but with ψ∗(now) added to the the initial
database DS0 , that is, if DS0 = {Know(ψ0(now),S0)} then D∗

S0
= {Know(ψ0(now)∧

ψ∗(now),S0)}. As already done in the proof of Theorem 3, it is possible to demon-
strate that D ∪E ∪Sensed[σ+] and D∗∪E∪Sensed[σ] are equivalent sets of axioms.

As a consequence of that and equation (7) the following holds:

D∗∪E ∪{Sensed[σ]} |= ∃x.Know(ψ(now) ⊃ ρ1(φ(~x,now),A),end[σ])

Given that both ψ∗(now) and ψ(now) ⊃ ρ1(φ(~x,now),A) are objective formulas and
σ is of length k, we can apply the induction hypothesis; thus, there exist ground terms
~t such that

D∗∪E ∪{Sensed[σ]} |= Know(ψ(now) ⊃ ρ1(φ(~t,now),A),end[σ])

Again since D ∪E ∪Sensed[σ+] and D∗∪E ∪Sensed[σ] are equivalent we conclude
that

D ∪E ∪{Sensed[σ+]} |= Know(ψ(now) ⊃ ρ1(φ(~t,now),A),end[σ])

From Proposition 11.6.2 in [25], the fact that σ+ = σ · (A,1), and the fact that
Sensed[σ+] = Sensed[σ]∪{ψ(end[σ])}, we have that

D ∪E ∪{Sensed[σ+]} |=
Know(φ(~t,now),end[σ+]) ≡ Know(ψ(now) ⊃ ρ1(φ(~t,now),A),end[σ])
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and, therefore, we conclude that

D ∪E ∪{Sensed[σ+]} |= Know(φ(~t,now),end[σ+])

LEMMA 7 (Disjunctive and Mutually Exclusive Knowledge with Existentials). Let
φ1(now), φ2(~x,now), and φ3(~y,now) be three objective formulas with non-situation
free variables~x and~y. If

D ∪E ∪{Sensed[σ]} |= Know(φ1(now),end[σ]) ∨
∃~x.Know(¬φ1(now)∧φ2(~x,now)∧∀~y.¬φ3(~y,now),end[σ]) ∨
∃~y.Know(¬φ1(now)∧∀~x.¬φ2(~x,now)∧φ3(~y,now),end[σ])

then one of the following cases applies:

− D ∪E ∪{Sensed[σ]} |= Know(φ1(now),end[σ]);

− D ∪E ∪{Sensed[σ]} |= ∃~x.Know(φ2(~x,now),end[σ]); or

− D ∪E ∪{Sensed[σ]} |= ∃~y.Know(φk(~y,now),end[σ]).
Proof. First notice that, due to properties of knowledge we can push the existential

quantifiers inside the Know modality:

D ∪E ∪{Sensed[σ]} |= Know(φ1(now),end[σ]) ∨
Know(¬φ1(now)∧∃~x.φ2(~x,now)∧∀~y.¬φ3(~y,now),end[σ]) ∨
Know(¬φ1(now)∧∀~x.¬φ2(~x,now)∧∃~y.φ3(~y,now),end[σ])

By Theorem 3, D ∪E ∪{Sensed[σ]} logically entails one of the following formulas:
(i) Know(φ1(now),end[σ]); (ii) Know(¬φ1(now)∧∃~x.φ2(~x,now)∧∀~y.¬φ3(~y,now),
end[σ]); or (iii) Know(¬φ1(now)∧∀~x.¬φ2(~x,now)∧∃~y.φ3(~y,now),end[σ]). In the
first case, we are done easily. If (ii) applies, then by properties of knowledge D ∪E ∪
{Sensed[σ]} |= Know(¬φ1(now),end[σ])∧Know(∀~y.¬φ3(~y,now),end[σ]). Hence,
by properties of knowledge, we can pull out the universal quantifier from inside
the Know modality so that D ∪E ∪{Sensed[σ]} |= ∀~y.Know(¬φ3(~y,now),end[σ])
holds and, as a result, D ∪E ∪{Sensed[σ]} |= ∀~y.¬Know(φ3(~y,now),end[σ]). Then,
given the initial assumption, as the first and the third disjunct are ruled out, the
following should hold

D ∪E ∪{Sensed[σ]} |= ∃~x.Know(¬φ1(now)∧∀~y.¬φ3(~y,now)∧φ2(~x,now),end[σ])

from which D ∪E ∪{Sensed[σ]} |= ∃~x.Know(φ2(~x,now),end[σ]) follows directly.
Case (iii) is analogous.
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