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Motivation

An analogy: The Peano axioms for number theory.

The second order language (with equality):

A single constant 0.
A unary function symbol σ (successor function).
A binary predicate symbol <.

A fragment of Peano arithmetic:

σ(x) = σ(y) ⊃ x = y ,

(∀P).{P(0) ∧ [(∀x).P(x) ⊃ P(σ(x))]} ⊃ (∀x)P(x)

¬x < 0,

x < σ(y) ≡ x ≤ y .

Here, x ≤ y is an abbreviation for x < y ∨ x = y .
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Motivation (continued)

The second sentence (reproduced below) is a second order
induction axiom.

(∀P).{P(0) ∧ [(∀x).P(x) ⊃ P(σ(x))]} ⊃ (∀x)P(x)

It is a second order way of characterising the domain of discourse
as the smallest set such that

1 0 is in the set.

2 Whenever x is in the set, so is σ(x).

Second order Peano arithmetic is categorical (it has a unique
model).
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Motivation (notes)

First order Peano arithmetic: Replace the second order axiom
by an induction schema representing countably infinitely many
first order sentences, one for each instance of P obtained by
replacing P by a first order formula with one free variable.

First order Peano arithmetic is not categorical; it has
(infinitely many) nonstandard models. This follows from the
Gödel incompleteness theorem, which says that first order
arithmetic is incomplete, i.e. there are sentences true of the
principal interpretation of the first order axioms (namely, the
natural numbers) which are false in some of the nonstandard
models, and hence not provable from the first order axioms.
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Motivation (notes)

So why not use the second order axioms? Because second
order logic is incomplete, i.e. there is no “decent”
axiomatisation of second order logic which will yield all the
valid second order sentences!

So why appeal to second order logic at all? Because
semantically, but not syntactically, it characterises the natural
numbers. We’ll find the same phenomenon in semantically
characterising the situation calculus.



Foundations of The Situation Calculus Reasoning about situations Basic theories of actions Regression Property Persistence

Foundational Axioms for the Situation Calculus

We use a 3-sorted language: The sorts are situation, object and
action.

There is a unique situation constant symbol, S0, denoting the
initial situation (it’s like the number 0 in Peano arithmetic).

We have a family of successor functions (unlike Peano
arithmetic which has a unique successor function).

do : action × situation→ situation.
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Foundational Axioms (continued)

The axioms:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (1)

(∀P).P(S0) ∧ (∀a, s)[P(s) ⊃ P(do(a, s))]

⊃ (∀s)P(s) (2)

¬s < S0, (3)

s < do(a, s ′) ≡ s v s ′, (4)

where s v s ′ is an abbreviation for s < s ′ ∨ s = s ′.

Any model of these axioms will have its domain of situations
isomorphic to the smallest set S satisfying:

1 S0 ∈ S.

2 If S ∈ S, and A ∈ A, then do(A,S) ∈ S, where A is the
domain of actions in the model.
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Foundational Axioms (notes)

Compare with the Peano axioms for the natural numbers.

Axiom (2) is a second order way of limiting the sort situation
to the smallest set containing S0, and closed under the
application of the function do to an action and a situation.

These axioms say that the tree of situations is really a tree.
No cycles, no merging. It does not say that all models of
these axioms have isomorphic trees (because they may have
different domains of actions).
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Foundational Axioms (continued)

Situations are finite sequences of actions.

do(C , do(B, do(A,S0)))

To obtain the action history corresponding to this term,
namely the performance of action A, followed by B, followed
by C , read this list from right to left.

Therefore, when situation terms are read from right to left,
the relation s < s ′ means that situation s is a proper
subhistory of the situation s ′.

The foundation axioms are domain independent.

They will provide the basic properties of situations in any
domain specific axiomatisation of particular fluents and
actions.

Henceforth, call the 4 foundation axioms Σ.
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Some Consequences of these Axioms

S0 6= do(a, s).

s = S0 ∨ (∃a, s ′)s = do(a, s ′). (Existence of a predecessor)

S0 v s.

s1 < s2 ⊃ s1 6= s2. (Unique names)

¬s < s. (Anti-reflexivity)

s < s ′ ⊃ ¬s ′ < s. (Anti-symmetry)

s1 < s2 ∧ s2 < s3 ⊃ s1 < s3. (Transitivity)

s v s ′ ∧ s ′ v s ⊃ s = s ′.
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More Consequences of the Axioms

Definition

The Principle of Double Induction

(∀R).R(S0,S0) ∧
[(∀a, s).R(s, s) ⊃ R(do(a, s), do(a, s))] ∧
[(∀a, s, s ′).s v s ′ ∧ R(s, s ′) ⊃ R(s, do(a, s ′))]

⊃ (∀s, s ′).s v s ′ ⊃ R(s, s ′).
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The Principle of Double Induction (notes)

These inductive invariants might be e.g. integrity constraints
in databases or safety properties in robotics or planning
problems.
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Executable Situations

Definition

Executable bf situations

Action histories in which it is actually possible to perform the
actions one after the other.

s < s ′
def
=s < s ′∧

(∀a, s∗).s < do(a, s∗) v s ′ ⊃ Poss(a, s∗).

s < s ′ means that s is an initial subhistory of s ′, and all the actions
occurring between s and s ′ can be executed one after the other.

s ≤ s ′
def
=s < s ′ ∨ s = s ′, executable(s)

def
= S0 ≤ s.
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Executable Situations (notes)

A situation is a finite sequence of actions. There are no constraints
on the actions entering into such a sequence, so that it may not be
possible to actually execute these actions one after the other.



Foundations of The Situation Calculus Reasoning about situations Basic theories of actions Regression Property Persistence

Induction for executable situations

executable(do(a, s)) ≡ executable(s) ∧ Poss(a, s),

executable(s) ≡
s = S0∨(∃a, s ′).s = do(a, s ′)∧Poss(a, s ′)∧executable(s ′),

executable(s ′) ∧ s v s ′ ⊃ executable(s).

Definition

The Principle of Induction for Executable Situations

(∀P).P(S0) ∧ (∀a, s)[P(s) ∧ executable(s) ∧ Poss(a, s) ⊃
P(do(a, s))]

⊃ (∀s).executable(s) ⊃ P(s).
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Double induction for executable situations

Definition

The Principle of Double Induction for Executable Situations

(∀R).R(S0,S0) ∧
[(∀a, s).Poss(a, s) ∧ executable(s) ∧ R(s, s) ⊃

R(do(a, s), do(a, s))] ∧
[(∀a, s, s ′).Poss(a, s ′) ∧ executable(s ′) ∧ s v s ′ ∧ R(s, s ′) ⊃

R(s, do(a, s ′))]
⊃ (∀s, s ′).executable(s ′) ∧ s v s ′ ⊃ R(s, s ′).

Frequently, we want to prove sentences (or inductive invariants) of
the form

(∀s, s ′).S0 v s ∧ s v s ′ ⊃ R(s, s ′).
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Why Prove Properties of World Situations?

Reasoning about systems.
(∀s).light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

This has the typical syntactic form for a proof by the simple
induction axiom of the foundational axioms.
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Why Prove Properties (notes)?

Integrity constraints in database theory
Some background:

An integrity constraint specifies what counts as a legal
database state. A property that every database state must
satisfy.
Examples:

Salaries are functional: No one may have two different salaries
in the same database state.
No one’s salary may decrease during the evolution of the
database.

The concept of an integrity constraint is intimately connected
with that of database evolution.
No matter how the database evolves, the constraint will be
true in all database futures. =⇒
In order to make formal sense of integrity constraints, need a
prior theory of database evolution.
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Why Prove Properties (notes)?

How do databases change?
One way is via predefined update transactions, e.g.

Change a person’s salary to $.
Register a student in a course.

Transactions provide the only mechanism for such state
changes.

We have a situation calculus based theory of database
evolution, so use it!
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Why Prove Properties (continued)?

Integrity constraints in database theory
Represent integrity constraints, IC , as first order sentences,
universally quantified over situations.

No one may have two different grades for the same course in
any database state:

(∀s)(∀st, c , g , g ′).S0 ≤ s ∧ grade(st, c , g , s) ∧ grade(st, c , g ′, s)
⊃ g = g ′.

Salaries must never decrease:

(∀s, s ′)(∀p, $, $′).S0 ≤ s ∧ s ≤ s ′ ∧ sal(p, $, s) ∧ sal(p, $′, s ′)
⊃ $ ≤ $′.

Constraint satisfaction defined: A database satisfies an integrity
constraint IC iff

Database |= IC .
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Planning

The standard logical account of planning views this as a
theorem proving task.

To obtain a plan whose execution will lead to a world
situation s in which the goal G (s) will be true, establish that

Axioms |= (∃s).executable(s) ∧ G (s).

Sometimes we would like to establish that no plan could
possibly lead to a given world situation. This is the problem of
establishing that

Axioms |= (∀s).executable(s) ⊃ ¬G (s),

i.e. that in all possible future world situations, G will be false.
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Programming

Model checking for executions of program relative to
(potentially non-deterministic) domain.

Synthesis of programs and orchestration.

High-level programming, including Golog, ConGolog,
IndiGolog, MIndiGolog
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Proving Invariants in Programs & Plans

Goal Impossibility: Given a goal G , establish that there is no
legal situation in which that goal is achieved:

D |= ∀s : S0 ≤Legal s → ¬G (s)

Goal Futility: Given a goal G and situation σ, establish that the
goal cannot be achieved in any legal future of σ:

D |= ∀s : σ ≤Legal s → ¬G (s)

Checking State Constraints: Given a state constraint SC , show
that the constraint holds in every legal situation:

D |= ∀s : S0 ≤Legal s → SC (s)

This can be seen as a variant of goal impossibility, by showing that
the constraint can never be violated.
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Proving Invariants in Programs & Plans (Continued)

Note that we define a relation <α for each action description
predicate α, with the following definitions:

¬ (s <α S0)

s <α do(a, s ′) ≡ s ≤α s ′ ∧ α(a, s ′)

For example, by stating that s <Poss s ′ we assert that not only is s ′

in the future of s, but that all actions performed between s and s ′

were actually possible;
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Why Prove Properties of World Situations? (notes)

Note how futility differs from goal impossibility: while the agent
may have initially been able to achieve its goal, the actions that
have subsequently been performed have rendered the goal
unachievable. Agents would be well advised to avoid such
situations.
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Summary (so far)

Both dynamically changing worlds and databases evolving under
update transactions may be represented in the situation calculus.

In general, we assume given some situation calculus
axiomatisation, with a distinguished initial situation S0.

Objective is to prove properties true of all situations in the
future of S0.

Examples:

(∀s).light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

(∀s, s ′, p, $, $′).executable(s ′) ∧ s v s ′ ∧ sal(p, $, s)∧
sal(p, $′, s ′) ⊃ $ ≤ $′.

These are sentences universally quantified over situations.
Normally, such sentences requires induction!
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Proving Properties of Situations: An Example

(∀s).light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

Assume this is true of the initial situation:

light(S0) ≡ [open(Sw1,S0) ≡ open(Sw2,S0)].

Successor state axioms for open, light:

open(sw , do(a, s)) ≡ ¬open(sw , s) ∧ a = toggle(sw) ∨
open(sw , s) ∧ a 6= toggle(sw).

light(do(a, s)) ≡
¬light(s) ∧ [a = toggle(Sw1) ∨ a = toggle(Sw2)] ∨
light(s) ∧ a 6= toggle(Sw1) ∧ a 6= toggle(Sw2).

Simple induction principle:

P(S0) ∧ [(∀a, s).P(s) ⊃ P(do(a, s))] ⊃ (∀s).P(s).

So, take P(s) to be:
light(s) ≡ [open(Sw1, s) ≡ open(Sw2, s)].

QED
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Proving Properties of Situations: Another Example

Salaries must never decrease:
(∀s, s ′, p, $, $′).executable(s ′) ∧ s v s ′

∧sal(p, $, s) ∧ sal(p, $′, s ′) ⊃ $ ≤ $′.

To change a person’s salary, the new salary must be greater
than the old:

Poss(change-sal(p, $), s) ≡ (∃$′).sal(p, $′, s) ∧ $′ < $.

Successor state axiom for sal:

sal(p, $, do(a, s)) ≡ a = changeSal(p, $) ∨
sal(p, $, s) ∧ (∀$′)a 6= changeSal(p, $′).

Initially, the relation sal is functional in its second argument:

sal(p, $,S0) ∧ sal(p, $′,S0) ⊃ $ = $′.

Unique names axiom for change-sal:

change-sal(p, $) = change-sal(p′, $′) ⊃ p = p′ ∧ $ = $′.
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Proving Properties of Situations: Another Example

Double induction principle:

(∀R).R(S0, S0) ∧
[(∀a, s).Poss(a, s) ∧ executable(s) ∧ R(s, s) ⊃
R(do(a, s), do(a, s))] ∧
[(∀a, s, s ′).Poss(a, s ′) ∧ executable(s ′) ∧ s v s ′ ∧ R(s, s ′) ⊃
R(s, do(a, s ′))]

⊃ (∀s, s ′).executable(s ′) ∧ s v s ′ ⊃ R(s, s ′).

The sentence to be proved is logically equivalent to:

(∀s, s ′).executable(s ′) ∧ s v s ′ ⊃
(∀p, $, $′).sal(p, $, s) ∧ sal(p, $′, s ′) ⊃ $ ≤ $′.

So, take R(s, s ′) to be:

(∀p, $, $′).sal(p, $, s) ∧ sal(p, $′, s ′) ⊃ $ ≤ $′.

QED
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Basic theories of actions

Recall that Σ denotes the four foundational axioms for situations.

We now consider some metamathematical properties of these
axioms when combined with successor state and action
precondition axioms, and unique names axioms for actions.

Such a collection of axioms will be called a basic theory of
actions.

First we must be more precise about what counts as successor
state and action precondition axioms.
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Uniform Formulae

Let σ be a term of sort situation .

Definition (Uniform Formulae)

A formula is uniform in σ iff it does not mention the predicates
Poss or <, it does not quantify over variables of sort situation, it
does not mention equality on situations, and whenever it mentions
a term of sort situation in the situation argument position of a
fluent, then that term is σ.

Formulas uniform in s = Markov property. The future (states)
are determined by the present (state).
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Action precondition and successor state axioms

Definition: Action Precondition Axiom
An action precondition axiom is a sentence of the form:

(∀x1, · · · , xn, s).Poss(A(x1, · · · , xn), s) ≡ ΠA(x1, · · · , xn, s),

where A is an n-ary action function, and ΠA is a formula that
is uniform in s and whose free variables are among
x1, · · · , xn, s.

Definition: Successor State Axiom A successor state axiom
for an (n + 1)-ary fluent F is a sentence of the form:

(∀a, s)(∀x1, . . . , xn).F (x1, . . . , xn, do(a, s)) ≡ ΦF , (5)

where ΦF is a formula uniform in s, all of whose free variables
are among a, s, x1, . . . , xn.
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Basic Action Theories

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 where

Σ are the foundational axioms for situations.

Dss is a set of successor state axioms.

Dap is a set of action precondition axioms.

Duna is the set of unique names axioms for actions.

DS0 is a set of first order sentences with the property that S0

is the only term of sort situation mentioned by the fluents of a
sentence of DS0 . Thus, no fluent of a formula of DS0 mentions
a variable of sort situation or the function symbol do. DS0 will
play the role of the initial situation of the world (i.e. the one
we start off with, before any actions have been “executed”).
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Theorem (Relative Satisfiability)

D is satisfiable iff Duna ∪ DS0 is.

Relative satisfiability assures us that provided the initial database
together with the unique names axioms for actions are satisfiable,
then unsatisfiability cannot be introduced by augmenting these
with the foundational axioms, together with the action
preconditions and successor state axioms. This as
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Regression

The Regressable Formulas.

The essence of a regressable formula is that each of its
situation terms is rooted at S0, and therefore, one can tell, by
inspection of such a term, exactly how many actions it
involves.

Examples of regressable formulae: can the actions in the sequence

walk(A,B,Adrian), train(B,C ,Adrian),walk(C ,D,Adrian) be
executed one after the other beginning in S0?

Poss(walk(A,B,Adrian), S0) ∧
Poss(train(B,C ,Adrian), do(walk(A,B,Adrian), S0)) ∧
Poss(walk(C ,D,Adrian), do([walk(A,B,Adrian), train(B,C ,Adrian)],S0)).

The following are not regressable:

(∃a)Poss(a,S0), holding(x , do(walk(A,B,Adrian), s)).
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Another example of regressable formulae: The Gold Thief

The (potential) thief would like to know whether the following
action sequence

walk(A,B,Bruce), enter(bank(Bruce)), crackSafe(Bruce)

can be executed one after the other beginning in S0?

Poss(walk(A,B,Bruce),S0) ∧
Poss(enter(bank(Bruce)), do(walk(A,B,Bruce),S0)) ∧
Poss(crackSafe(Bruce), do([walk(A,B,Bruce), enter(bank(Bruce)],S0)).

The following are not regressable:

(∃a)Poss(a,S0), holding(Gold , do(pickup(Gold ,Bruce), s)).
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Regression (notes)

It is not necessary to be able to tell what those actions are,
just how many they are. In addition, when a regressable
formula mentions a Poss atom, we can tell, by inspection of
that atom, exactly what is the action function symbol
occurring in its first argument position, for example, that it is
a move action.

Assume a background axiomatisation that includes a set of
successor state and action precondition axioms.
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The Regression Operator: Simple Version

W is a regressable formula of Lsitcalc that mentions no functional
fluents.

1 If W is an atom, there are four possibilities:

1.1 W is a situation independent atom. Then R[W ] = W .
1.2 W is a relational fluent atom of the form F (~t,S0). Then

R[W ] = W .
1.3 W is a regressable Poss atom, so it has the form Poss(A(~t), σ)

for terms A(~t) and σ of sort action and situation respectively.
Here, A is an action function symbol of Lsitcalc . Then there
must be an action precondition axiom for A of the form

Poss(A(~x), s) ≡ ΠA(~x , s).
1.4 W is a relational fluent atom of the form F (~t, do(α, σ)). Let

F ’s successor state axiom in Dss be
F (~x , do(a, s)) ≡ ΦF (~x , a, s).

Then R[W ] = R[ΦF (~t, α, σ)].



Foundations of The Situation Calculus Reasoning about situations Basic theories of actions Regression Property Persistence

The Regression Operator: Simple Version (notes)

Assume that all quantifiers (if any) of ΠA(~x , s) have had their
quantified variables renamed to be distinct from the free variables
(if any) of Poss(A(~t), σ). Then

R[W ] = R[ΠA(~t, σ)].

In other words, replace the atom Poss(A(~t), σ) by a suitable
instance of the right hand side of the equivalence in A’s action
precondition axiom, and regress that expression. The above
renaming of quantified variables of ΠA(~x , s) prevents any of these
quantifiers from capturing variables in the instance Poss(A(~t), σ).
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The Regression Operator: Simple Version (notes)

Assume that all quantifiers (if any) of ΦF (~x , a, s) have had their
quantified variables renamed to be distinct from the free variables
(if any) of F (~t, do(α, σ)).

In other words, replace the atom F (~t, do(α, σ)) by a suitable
instance of the right hand side of the equivalence in F ’s successor
state axiom, and regress this formula. The above renaming of
quantified variables of ΦF (~x , a, s) prevents any of these quantifiers
from capturing variables in the instance F (~t, do(α, σ)).
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The Regression Operator: Simple Version

2 For non-atomic formulas, regression is defined inductively.

2.1 R[¬W ] = ¬R[W ],

2.2 R[W1 ∧W2] = R[W1] ∧R[W2],

2.3 R[(∃v)W ] = (∃v)R[W ].
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The Regression Operator: Simple Version (notes)

Intuitively, the regression operator eliminates Poss atoms in
favour of their definitions as given by action precondition
axioms, and replaces fluent atoms about do(α, σ) by logically
equivalent expressions about σ as given by successor state
axioms. Moreover, it repeatedly does this until it cannot make
such replacements any further.

Each R-step reduces the depth of nesting of the function
symbol do in the fluents of W by substituting suitable
instances of ΦF for each occurrence of a fluent atom of W of
the form F (t1, . . . , tn, do(α, σ)). Since no fluent atom of ΦF

mentions the function symbol do, the effect of this
substitution is to replace each such F by a formula whose
fluents mention only the situation term σ, and this reduces
the depth of nesting by one.
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The regression theorem

Theorem (The Regression Theorem)

Suppose W is a regressable sentence of Lsitcalc that mentions no
functional fluents, and D is a basic theory of actions. Then,

D |= W iff DS0 ∪ Duna |= R[W ].

Consider a sequence α1, . . . , αn of ground action terms.

Problem: Determine whether this is executable. Is it the case
that:

D |= executable(do([α1, . . . , αn], S0))
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Executable Action Sequences

It is straightforward to show that:

Σ |= (∀a1, . . . , an).executable(do([a1, . . . , an],S0)) ≡
n∧

i=1

Poss(αi , do([α1, . . . , αi−1],S0)).

Theorem

Suppose that α1, . . . , αn is a sequence of ground action terms of
Lsitcalc . Then

D |= executable(do([α1, . . . , αn], S0))

iff

DS0 ∪ Duna |=
n∧

i=1

R[Poss(αi , do([α1, . . . , αi−1], S0))].
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Executable Action Sequences (notes)

This provides a systematic, regression-based method for
determining whether a ground situation do([α1, . . . , αn],S0) is
executable. Moreover, it reduces this test to a theorem-proving
task in the initial database DS0 , together with unique names
axioms for actions.
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Example: Executibility Testing (notes)

Another database example:

Compute the legality test for the transaction sequence
register(Bill ,C 100), drop(Bill ,C 100), drop(Bill ,C 100) which
intuitively should fail because the first drop leaves Bill
unenrolled in C 100, so that the precondition for the second
drop will be false.
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Executibility Testing (Continued)

Legality test for the transaction sequence
register(Bill ,C 100), drop(Bill ,C 100), drop(Bill ,C 100).

First compute

R[Poss(register(Bill ,C 100), S0)] ∧
R[Poss(drop(Bill ,C 100), do(register(Bill ,C 100),S0))] ∧
R[Poss(drop(Bill ,C 100), do(drop(Bill ,C 100),

do(register(Bill ,C 100),S0)))],

which is

R[(∀p).prerequ(p,C 100) ⊃ (∃g).grade(Bill , p, g ,S0) ∧ g ≥ 50] ∧
R[enrolled(Bill ,C 100, do(register(Bill ,C 100),S0))] ∧
R[enrolled(Bill ,C 100, do(drop(Bill ,C 100),

do(register(Bill ,C 100),S0)))].

This yields {(∀p).prerequ(p,C 100) ⊃
(∃g).grade(Bill , p, g ,S0) ∧ g ≥ 50} ∧ true ∧ false

transaction sequence is illegal!
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Another Example: Legality Testing

change(Bill ,C 100, 60), register(Sue,C 200), drop(Bill ,C 100).
First compute

R[(∃g ′)grade(Bill ,C 100, g ′,S0) ∧ g ′ 6= 60] ∧
R[(∀p)prerequ(p,C 200) ⊃

(∃g)grade(Sue, p, g , do(change(Bill ,C 100, 60),S0)) ∧ g ≥ 50] ∧
R[enrolled(Bill ,C 100, do(register(Sue,C 200),

do(change(Bill ,C 100, 60), S0)))].

This simplifies to

{(∃g ′).grade(Bill ,C 100, g ′,S0) ∧ g ′ 6= 60} ∧
{(∀p).prerequ(p,C 200) ⊃

Bill = Sue ∧ p = C 100 ∨ (∃g).grade(Sue, p, g , S0) ∧ g ≥ 50} ∧
{Sue = Bill ∧ C 200 = C 100 ∨ enrolled(Bill ,C 100,S0)}.

So the transaction sequence is legal iff this sentence is
entailed by the initial database together with unique names
axioms for actions.
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The Projection Problem

Definition (The Projection Problem)

Given an action sequence α1, . . . , αn of ground action terms, and a
query Q(s) whose only free variable is the situation variable s,
what is the answer to Q in that situation resulting from performing
this action sequence, beginning with the initial world situation S0?
Formally, the problem of determining whether

D |= Q(do([α1, . . . , αn],S0)).

Note that Q(do([α1, . . . , αn],S0)) will normally be regressable
formulae.

So, by the Regression Theorem, regress
Q(do([α1, . . . , αn], S0)), and verify it in the initial situation
with unique names axioms for actions.
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Projection problem example: Database Query Evaluation

Consider again the transaction sequence

T = change(Bill ,C 100, 60), register(Sue,C 200), drop(Bill ,C 100).

Suppose the query is

(∃st).enrolled(st,C 200, do(T, S0)) ∧
¬enrolled(st,C 100, do(T,S0)) ∧
(∃g).grade(st,C 200, g , do(T, S0)) ∧ g ≥ 50.

Regress this query, after some simplification, assuming that
DS0 |= C 100 6= C 200, we obtain

(∃st).[st = Sue ∨ enrolled(st,C 200,S0)] ∧
[st = Bill ∨ ¬enrolled(st,C 100,S0)] ∧
[(∃g).grade(st,C 200, g ,S0) ∧ g ≥ 50].

The answer to the query is obtained by evaluating this last
formula in DS0 , together w. unique names axioms for actions.
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Projection problem example: Planning

For example, a projection query for the sequence of actions

walk(A,B,Adrian), train(B,C ,Adrian),walk(C ,D,Adrian)

might be: Will Adrian get home from the Jazz Festival tonight?

D |= getHome(Adrian, do([walk(VillaCelimontana,B,Adrian),

train(B,C ,Adrian),walk(C ,D,Adrian)],S0)).
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Regression (re-cap)

Regression operates, intuitively, by unwinding actions one at a
time:

R(Holding(agt, obj , do(c , s)))⇒
pickup(agt, obj) ∈ c

∨Holding(agt, obj , s) ∧ ¬ (drop(agt, obj) ∈ c)

By repeatedly applying it, we get a query about S0:

D |= φ[do(c1, do(c2, . . . ,S0))] iff D |= R∗(φ)[S0]

If you don’t know the current situation, you cannot reason using
regression.
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Effective reasoning in the situation calculus

Effective reasoning in the situation calculus is generally based
on syntactic manipulation of a query into a form that is more
amenable to automated reasoning.

In the general case, answering a query about a basic action
theory D is a theorem-proving task in second-order logic
(denoted SOL) due to the induction axiom included in the
foundational axioms:

D |=SOL ψ

If a query only performs existential quantification over
situation terms, it can be answered without the induction
axiom (denoted I ) and thus using only first-order logic (FOL):

D |=SOL ∃s : ψ(s) iff D − {I} |=FOL ∃s : ψ(s)
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Effective reasoning in the situation calculus

Simpler still, queries uniform in the initial situation, can be
answered using only first-order logic and a limited set of
axioms:

D |=SOL φ[S0] iff DS0 ∪ Dbg |=FOL φ[S0]
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Regression: Another example

Recall our thief wants prove

D |= (∃a, b) : walk(a, b), enter(bank(b),Bob), crackSafe(bank(b),Bob)

As owners of the gold, we would like to ensure that the thief
cannot steal it. Unfortunately this is not possible, as nothing
prevents him from simply cracking the safe and taking the gold.

We can, however, ensure that the thief cannot steal the gold
undetected.

D |= (∀s) : s0 ≤Undetected s → ¬Stolen(s)

which will be true when the following is true

Dbg ∪ DS0 |= ¬Stolen(S0) ∧ [¬SafeOpen(S0) ∨ LightOn(S0)]



Foundations of The Situation Calculus Reasoning about situations Basic theories of actions Regression Property Persistence

Regression: Another example (continued)

Unfortunately, this is not possible within the framework of
regression presented thus far for two reasons

(∀s) : s0 ≤Undetected s ⊃ ¬Stolen(s) is not a regressable
formulae, since it quantifies over situations.

The difficulty stems from the second-order induction axiom to
define the set of all situations - meaning we can’t easily
regress over formulae that includes universal quantification.
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Property Persistence

Suppose we could ”factor out” the quantification. Then we could
get on with the business of doing regression.

Definition (Persistence condition)

The persistence condition P[φ, α] of a formula φ and action
conditions α to mean: assuming all future actions satisfy α, φ will
remain true.

P[φ, α](s) ≡ ∀s ′ : s ≤α s ′ → φ(s ′)

Like R, the idea is to transform a query into a form that is easier
to deal with.
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Property Persistence

The persistence condition can be calculated as a fixpoint:

P1[φ, α](s)
def
= φ(s) ∧ ∀c : α(c)→ R[φ(do(c, s))]

Pn[φ, α](s)
def
= P1[Pn−1[φ, α], α]

(
Pn[φ, α]→ Pn+1[φ, α]

)
⇒ (Pn[φ, α] ≡ P[φ, α])

This calculation can be done using static domain reasoning and
provably terminates in several important cases.
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Property persistence theorem

The property persistence theorem guarentees that if Pn
D(φ, α)

implies Pn+1
D (φ, α), then Pn

D(φ, α) is the persistence condition for
φ under α.

Theorem

Given a basic action theory D, uniform formula φ and action
description predicate α, then for any n:

Dbg |= ∀s : Pn
D(φ, α)[s]→ Pn+1

D (φ, α)[s]

iff
D −Ds0 |= ∀s : Pn

D(φ, α)[s] ≡ PD(φ, α)[s]
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Calculating Persistence

Define P1[φ, α] to be ”persistence to depth 1”:

P1[φ, α](s)
def
=φ(s) ∧ ∀c .[α(c , s)⇒ R[φ(do(c , s))]]

We can assert that a property holds to depth 2, 3, . . . by
repeatedly applying P1:

Pn[φ, α] = P1[Pn−1[φ, alpha], α]

We want persistence for any n: need the least-fixed point of P1.
Fixed-point theory guarantees we can calculate this by trans-finite
iteration.
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Proving Invariants in Programs & Plans (Continued)

Need for Cooperation: Given an agent agt, goal G and situation
σ, establish that no sequence of actions performed by that agent
can achieve the goal. Suppose we define MyAction to identify the
agent’s own actions:

MyAction(a, s)
def
= actor(a) = agt

Then the appropriate query is:

D |= ∀s : σ ≤MyAction s → ¬G (s)

If this is the case, the agent will need to seek cooperation from
another agent in order to achieve its goal.
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Proving Invariants in Programs & Plans (Continued)

Knowledge with Hidden Actions: An agent reasoning about its
own knowledge in asynchronous domains must account for
arbitrarily-long sequences of hidden actions. To establish that it
knows φ, it must establish that φ cannot become false through a
sequence of hidden actions:

D |= ∀s : σ ≤Hidden s → φ[s]
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