Golog semantics

Golog/ConGolog programs are syntactic objects.

How do we assign a formal semantics to them?

Let us first consider Golog only.

For simplicity we will not consider procedures, but see [DLL-AIJ00,LRLLS97].

Golog semantics (cont.)

We start by considering a single model of the SitCalc action theory. (That is we start by assuming complete information, just as in normal computer programs)

Any idea of what the semantics should talk about?

Evaluation semantics: intro

Idea: describe the overall result of the evaluation of the Golog program.

Given a Golog program δ and a situation s compute the situation s^{\prime} obtained by executing δ in s.

More formally: Define the relation:

$$
(\delta, s) \longrightarrow s^{\prime}
$$

where δ is a program, s is the situation in which the program is evaluated, and s^{\prime} is the situation obtained by the evaluation.

Such a relation can be defined inductively in a standard way using the so called evaluation (structural) rules

Evaluation semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81, Nielson\&Nielson99].

This whole-computation semantics is often call: evaluation semantics or natural semantics or computation semantic.

Evaluation rules for Golog: deterministic constructs

$$
\begin{array}{ll}
\text { Act : } & \frac{(a, s) \longrightarrow d o(a[s], s)}{\text { true }} \quad \text { if } \operatorname{Poss}(a[s], s) \\
\text { Test : } & \frac{(\phi ?, s) \longrightarrow s}{\text { true } \quad \text { if } \phi[s]} \\
\text { Seq : } & \frac{\left(\delta_{1} ; \delta_{2}, s\right) \longrightarrow s^{\prime}}{\left(\delta_{1}, s\right) \longrightarrow s^{\prime \prime} \wedge\left(\delta_{2}, s^{\prime}\right) \longrightarrow s^{\prime}} \\
\text { if : } & \frac{\left(\text { if } \phi \text { then } \delta_{1} \text { else } \delta_{2}, s\right) \longrightarrow s^{\prime}}{\left(\delta_{1}, s\right) \longrightarrow s^{\prime}} \quad \text { if } \phi[s] \\
\text { while }: & \frac{\left(\text { if } \phi \text { then } \delta_{1} \text { else } \delta_{2}, s\right) \longrightarrow s^{\prime}}{\left(\delta_{2}, s\right) \longrightarrow s^{\prime}} \quad \text { if } \neg \phi[s] \\
& \text { if } \phi[s] \quad
\end{array}
$$

Evaluation rules: nondeterministic constructs

Nondetbranch :

$$
\frac{\left(\delta_{1} \mid \delta_{2}, s\right) \longrightarrow s^{\prime}}{\left(\delta_{1}, s\right) \longrightarrow s^{\prime}} \quad \frac{\left(\delta_{1} \mid \delta_{2}, s\right) \longrightarrow s^{\prime}}{\left(\delta_{2}, s\right) \longrightarrow s^{\prime}}
$$

Nondetchoice :

$$
\frac{(\pi x . \delta(x), s) \longrightarrow s^{\prime}}{(\delta(t), s) \longrightarrow s^{\prime}} \quad(\text { for any } t)
$$

Nondetiter :

$$
\frac{\left(\delta^{*}, s\right) \longrightarrow s}{\text { true }} \quad \frac{\left(\delta^{*}, s\right) \longrightarrow s^{\prime}}{(\delta, s) \longrightarrow s^{\prime \prime} \wedge\left(\delta^{*}, s^{\prime \prime}\right) \longrightarrow s^{\prime}}
$$

Structural rules

The structural rules have the following schema:

```
CONSEQUENT
ANTECEDENT
```

which is to be interpreted logically as:

$$
\forall(\text { ANTECEDENT } \wedge \text { SIDE-CONDITION } \supset \text { CONSEQUENT })
$$

where $\forall Q$ stands for the universal closure of all free variables occurring in Q, and, typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

Given a model of the SitCalc action theory, the structural rules define inductively a relation, namely: the smallest relation satisfying the rules.

Examples

Compute the following assuming actions are always possible:

- $\left(a ; b, S_{0}\right) \longrightarrow s_{f}$
- $\left((a \mid b) ; c, S_{0}\right) \longrightarrow s_{f}$
- $\left((a \mid b) ; c ; P ?, S_{0}\right) \longrightarrow s_{f} \quad$ where P true iff a is not performed yet.

Getting logical

Till now we have defined the relation $(\delta, s) \longrightarrow s^{\prime}$ in a single model of the SitCalc action theory of interest.

But what about if the action theory has incomplete information and hence admits several models?

Idea: Define a logical predicate $\operatorname{Do}\left(\delta, s, s^{\prime}\right)$ starting from the definition of the relation $(\delta, s) \longrightarrow s^{\prime}$.

Definition of Do: intro

How: do we define a logical predicate $\operatorname{Do}\left(\delta, s, s^{\prime}\right)$ starting from the definition of the relation $(\delta, s) \longrightarrow s^{\prime}$?

- Rules correspond to logical conditions;
- The minimal predicate satisfying the rules is expressible in 2ndorder logic by using the formulas of the following form:

$$
\begin{aligned}
\forall D \cdot\{ & \\
& \text { logical formulas corresponding to the rules } \\
& \text { that use the predicate variable } D \text { in place of the relation } \\
\} & \supset D\left(\delta, s, s^{\prime}\right) .
\end{aligned}
$$

Definition of Do

```
Do(\delta,s,s') \equiv
    \forallD.{
    \forall[Poss(a[s],s) \supset D(a,s,do(a[s],s))]^
    \forall[\phi[s] \supset D(\phi?,s,s)]^
    \forall[D(\delta
        \forall[\phi[s]^D(\mp@subsup{\delta}{1}{},s,\mp@subsup{s}{}{\prime})\vee\neg\phi[s]\wedgeD(\mp@subsup{\delta}{2}{},s,\mp@subsup{s}{}{\prime})] \supset D(if \phi then }\mp@subsup{\delta}{1}{}\mathrm{ else }\mp@subsup{\delta}{2}{},s,\mp@subsup{s}{}{\prime})]
        \forall[\phi[s]^ s'=s \vee \neg\phi[s]^D(\delta2,s,s')\wedgeD(\mathrm{ while }\phi\mathrm{ do }\delta,s,\mp@subsup{s}{}{\prime}) \supset D(while \phi do }\delta,s,\mp@subsup{s}{}{\prime})]
        \forall[D(\mp@subsup{\delta}{1}{},s,\mp@subsup{s}{}{\prime})\veeD(\mp@subsup{\delta}{2}{},\mp@subsup{s}{}{\prime\prime},\mp@subsup{s}{}{\prime})\supsetD(\mp@subsup{\delta}{1}{}|\mp@subsup{\delta}{2}{},s,\mp@subsup{s}{}{\prime})]^
        \forall[D(\delta(t),s,\mp@subsup{s}{}{\prime}) \supset D(\pix.\delta(x),s, s')]^
        \forall[ s' =s\veeD(\delta,s,\mp@subsup{s}{}{\prime\prime})\wedgeD(\mp@subsup{\delta}{}{*},\mp@subsup{s}{}{\prime\prime},\mp@subsup{s}{}{\prime})\supsetD(\mp@subsup{\delta}{}{*},s,\mp@subsup{s}{}{\prime})]^
} \supset D(\delta,s,\mp@subsup{s}{}{\prime}).
```


Examples

Assuming the action theory Γ does not logically implies $\operatorname{Poss}\left(a, S_{0}\right)$, but all other actions are possible, find all s_{f} that constitute (certain) executions of the programs seen before, i.e., such that the following logical implication holds:

- $\Gamma \models \operatorname{Do}\left(a ; c, S_{0}, s_{f}\right)$
- $\Gamma \vDash \operatorname{Do}\left((a \mid b) ; c, S_{0}, s_{f}\right)$
- $\Gamma \vDash \operatorname{Do}\left((a \mid b) ; c ; P ?, S_{0}, s_{f}\right) \quad$ where P holds iff a is not performed yet.

Original Definition of Do

In [LRLLS97], $D o\left(\delta, s, s^{\prime}\right)$ is defined by induction on the structure of the program instead of using structural rules as above.

The main advantage of this definition is that $D o\left(\delta, s, s^{\prime}\right)$ can be is simply viewed as an abbreviation for a formula of the SitCalc.

Programs do not even need to be formally introduced!!!

Original Definition of Do (cont.)

```
Act :
    \(D o\left(a, s, s^{\prime}\right) \stackrel{\text { def }}{=} \operatorname{Poss}(a[s], s) \wedge s^{\prime}=\operatorname{do}(a[s], s)\)
Test:
    \(\operatorname{Do}\left(\phi ?, s, s^{\prime}\right) \stackrel{\text { def }}{=} \phi[s] \wedge s=s^{\prime}\)
Seq:
Nondetbranch:
Nondetchoice :
Nondetiter :
\(D o\left(\delta_{1} ; \delta_{2}, s, s^{\prime}\right) \stackrel{\text { def }}{=} \exists s^{\prime \prime} . \operatorname{Do}\left(\delta_{1}, s, s^{\prime \prime}\right) \wedge D o\left(\delta_{2}, s^{\prime \prime}, s^{\prime}\right)\)
```

Nondetbranch:

Nondetchoice :

Nondetiter :
$D o\left(a, s, s^{\prime}\right) \stackrel{\text { def }}{=} \operatorname{Poss}(a[s], s) \wedge s^{\prime}=\operatorname{do}(a[s], s)$
$\operatorname{Do}\left(\phi ?, s, s^{\prime}\right) \stackrel{\text { def }}{=} \phi[s] \wedge s=s^{\prime}$
$D o\left(\delta_{1} ; \delta_{2}, s, s^{\prime}\right) \stackrel{\text { def }}{=} \exists s^{\prime \prime} . \operatorname{Do}\left(\delta_{1}, s, s^{\prime \prime}\right) \wedge D o\left(\delta_{2}, s^{\prime \prime}, s^{\prime}\right)$
$\operatorname{Do}\left(\delta_{1} \mid \delta_{2}, s, s^{\prime}\right) \stackrel{\text { def }}{=} \operatorname{Do}\left(\delta_{1}, s, s^{\prime}\right) \vee \operatorname{Do}\left(\delta_{2}, s, s^{\prime}\right)$
$\operatorname{Do}\left(\pi x . \delta(x), s, s^{\prime}\right) \stackrel{\text { def }}{=} \exists x . \operatorname{Do}\left(\delta(x), s, s^{\prime}\right)$

It is not definable in 1st-order logic! ...

Original Definition of Do (cont. 2)

Nondeterministic iteration:

$$
\begin{aligned}
D o\left(\delta^{*}, s, s^{\prime}\right) \stackrel{\text { def }}{=} \forall P .\{ & \\
& \forall[P(s, s)] \wedge \\
& \forall\left[P\left(s, s^{\prime \prime}\right) \wedge D o\left(\delta, s^{\prime \prime}, s^{\prime}\right) \supset P\left(s, s^{\prime}\right)\right] \\
\} & \supset P\left(s, s^{\prime}\right)
\end{aligned}
$$

i.e., doing action δ zero or more times takes you from s to s^{\prime} iff $\left(s, s^{\prime}\right)$ is in every set (and thus, the smallest set) s.t.:

1. (s, s) is in the set for all situations s.
2. Whenever $\left(s, s^{\prime \prime}\right)$ is in the set, and doing δ in situation $s^{\prime \prime}$ takes you to situation s^{\prime}, then $\left(s, s^{\prime \prime}\right)$ is in the set.

Must use 2nd-order logic because transitive closure is not 1st-order definable.

And concurrency?

Unfortunately evaluation semantics does not extend to construct for concurrency.

We need a finer form of semantics, namely Transition Semantics, where we specify what executing a single step of the program amounts to.

Transition semantics: intro

Idea: describe the result of executing a single step of the Golog program.

- Given a Golog program δ and a situation s compute the situation s^{\prime} and the program δ^{\prime} that remains to be executed obtained by executing a single step of δ in s.
- Assert when a Golog program δ can be considered successfully terminated in a situation s.

Transition semantics: intro

More formally:

- Define the relation, named Trans and denoted by " $\longrightarrow "$):

$$
(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)
$$

where δ is a program, s is the situation in which the program is executed, and s^{\prime} is the situation obtained by executing a single step of δ and δ^{\prime} is what remains to be executed of δ after such a single step.

- Define a predicate. named Final and denoted by " $\sqrt{ }$ ":

$$
(\delta, s)^{\sqrt{ }}
$$

where δ is a program that can be considered (successfully) terminated in the situation s.

Such a relation and predicate can be defined inductively in a standard way, using the so called transition (structural) rules

Transition semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81, Nielson\&Nielson99].

This single-step semantics is often call: transition semantics or computation semantics.

Transition rules for Golog: deterministic constructs

$\begin{array}{ll}\text { Act: } & \frac{(a, s) \longrightarrow(n i l, d o(a[s], s))}{\text { true }} \text { if } \operatorname{Poss}(a[s], s) \\ \text { Test: } & \frac{(\phi ?, s) \longrightarrow(n i l, s)}{\text { true }} \text { if } \phi[s]\end{array}$
Seq : $\quad \frac{\left(\delta_{1} ; \delta_{2}, s\right) \longrightarrow\left(\delta_{1}^{\prime} ; \delta_{2}, s^{\prime}\right)}{\left(\delta_{1}, s\right) \longrightarrow\left(\delta_{1}^{\prime} ; s^{\prime}\right)} \quad \frac{\left(\delta_{1} ; \delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right)}{\left(\delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime} ; s^{\prime}\right)}$ if $\left(\delta_{1}, s\right) \sqrt{ }$
if : $\quad \frac{\left.\text { (if } \phi \text { then } \delta_{1} \text { else } \delta_{2}, s\right) \longrightarrow\left(\delta_{1}^{\prime}, s^{\prime}\right)}{\left(\delta_{1}, s\right) \longrightarrow\left(\delta_{1}^{\prime}, s^{\prime}\right)}$ if $\phi[s] \quad \frac{\left.\text { if } \phi \text { then } \delta_{1} \text { else } \delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right)}{\left(\delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right)}$ if $\rightarrow \phi[s]$
while : $\quad \frac{\text { (while } \phi \text { do } \delta, s) \longrightarrow\left(\delta^{\prime} ; \text { while } \phi \text { do } \delta, s\right)}{(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)}$ if $\phi[s]$

Termination rules for Golog: deterministic constructs

$$
\begin{array}{ll}
\text { Nil : } & \frac{(n i l, s)^{\vee}}{\text { true }} \\
\text { Seq : } & \frac{\left(\delta_{1} ; \delta_{2}, s\right)^{\vee}}{\left(\delta_{1}, s\right)^{\vee} \wedge\left(\delta_{2} ; s\right)^{\vee}} \\
\text { if : } & \frac{\left(\text { if } \phi \text { then } \delta_{1} \text { else } \delta_{2}, s\right)^{\vee}}{\left(\delta_{1}, s\right)^{\vee}} \text { if } \phi[s] \quad \frac{\left(\text { if } \phi \text { then } \delta_{1} \text { else } \delta_{2}, s\right)^{\vee}}{\left(\delta_{2}, s\right)^{\vee}} \text { if } \neg \phi[s] \\
\text { while : } & \frac{(\text { while } \phi \text { do } \delta, s)^{\vee}}{\text { true }} \text { if } \neg \phi[s] \quad \frac{(\text { while } \phi \text { do } \delta, s)^{\vee}}{(\delta, s)^{\sqrt{\prime}}} \text { if } \phi[s]
\end{array}
$$

Transition rules: nondeterministic constructs

$$
\begin{array}{ll}
\text { Nondetbranch : } & \frac{\left(\delta_{1} \mid \delta_{2}, s\right) \longrightarrow\left(\delta_{1}^{\prime}, s^{\prime}\right)}{\left(\delta_{1}, s\right) \longrightarrow\left(\delta_{1}^{\prime}, s^{\prime}\right)} \quad \frac{\left(\delta_{1} \mid \delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right)}{\left(\delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right)} \\
\text { Nondetchoice : } & \left.\frac{(\pi x . \delta(x), s) \longrightarrow\left(\delta^{\prime}(t), s^{\prime}\right)}{(\delta(t), s) \longrightarrow\left(\delta^{\prime}(t), s^{\prime}\right)} \quad \text { (for any } t\right) \\
\text { Nondetiter : } & \frac{\left(\delta^{*}, s\right) \longrightarrow\left(\delta^{\prime} ; \delta^{*}, s^{\prime}\right)}{(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)}
\end{array}
$$

Termination rules: nondeterministic constructs

Nondetbranch: $\quad \frac{\left(\delta_{1} \mid \delta_{2}, s\right)^{\vee}}{\left(\delta_{1}, s\right)^{\vee} \vee\left(\delta_{2}, s\right)^{\vee}}$
Nondetchoice : $\quad \frac{(\pi x . \delta(x), s)^{\vee}}{(\delta(t), s)^{\vee}}$ (for some t)
Nondetiter:

$$
\frac{\left(\delta^{*}, s\right)^{\vee}}{\text { true }}
$$

Structural rules

The structural rules have the following schema:

```
CONSEQUENT
                                    if SIDE-CONDITION
ANTECEDENT
```

which is to be interpreted logically as:

```
\(\forall(\) ANTECEDENT \(\wedge\) SIDE-CONDITION \(\supset\) CONSEQUENT \()\)
```

where $\forall Q$ stands for the universal closure of all free variables occurring in Q, and, typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

Given a model of the SitCalc action theory, the structural rules define inductively a relation, namely: the smallest relation satisfying the rules.

Examples

Compute the following assuming actions are always possible:

- $\left(a ; b, S_{0}\right) \longrightarrow\left(n i l ; b, d o\left(a, S_{0}\right)\right) \longrightarrow\left(n i l, d o\left(b\left(d o\left(a, S_{0}\right)\right)\right)\right.$
- $\left((a \mid b) ; c, S_{0}\right) \longrightarrow ? ? ?$
- ($\left.(a \mid b) ; c ; P ?, S_{0}\right) \longrightarrow ? ? ?$
- $\left(a ;(b \mid c), S_{0}\right) \longrightarrow ? ? ?$
- $\left((a ; b \mid a ; c), S_{0}\right) \longrightarrow ? ? ?$
where P true iff a is not performed yet.

Evaluation vs. transition semantics

How do we characterize a whole computation using single steps?

First we define the relation, named Trans *, denoted by \longrightarrow. by the following rules:

$$
\begin{array}{ll}
\text { Osteps : } & \frac{(\delta, s) \longrightarrow{ }^{*}(\delta, s)}{\text { true }} \\
\text { nsteps }: & \left.\frac{(\delta, s) \longrightarrow \longrightarrow^{*}\left(\delta^{\prime \prime}, s^{\prime \prime}\right)}{(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right) \wedge\left(\delta^{\prime}, s^{\prime}\right) \longrightarrow{ }^{*}\left(\delta^{\prime \prime}, s^{\prime \prime}\right)} \quad \text { (for some } \delta^{\prime}, s^{\prime}\right)
\end{array}
$$

Then it can be shown that:

$$
\begin{aligned}
&\left(\delta, s_{0}\right) \longrightarrow \\
&\left(\delta, s_{0}\right) \longrightarrow s_{f} \equiv \\
& *\left(\delta_{f}, s_{0}\right) \wedge\left(\delta_{f}, s_{f}\right) \vee \text { for some } \delta_{f}
\end{aligned}
$$

Getting logical

Till now we have defined the relation $(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)$ and the predicate $(\delta, s) \sqrt{ }$ in a single model of the SitCalc action theory of interest.

But what about if the action theory has incomplete information and hence admits several models?

Idea: Define a logical predicates Trans $\left(\delta, s, \delta^{\prime}, s^{\prime}\right)$ and Final (δ, s) starting from the definitions of the relation $(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)$, and $(\delta, s)^{\sqrt{ }}$.

Definition of Do: intro

How: do we define a logical predicate $\operatorname{Trans}\left(\delta, s, \delta^{\prime}, s^{\prime}\right)$ starting from the definition of the relation $(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)$? and the predicate $(\delta, s)^{\vee}$.

- Rules correspond to logical conditions;
- The minimal predicate satisfying the rules is expressible in 2ndorder logic by using the formulas of the following form (for Trans, similarly for Final):
$\forall T .\{$
logical formulas corresponding to the rules
that use the predicate variable T in place of the relation

$$
\} \supset T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) .
$$

Definition of Trans

$\operatorname{Trans}\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \equiv \forall T .\left[\ldots \supset T\left(\delta, s, \delta^{\prime}, s^{\prime}\right)\right]$, where \ldots stands for the conjunction of the universal closure of the following implications:

$$
\begin{array}{rll}
\operatorname{Poss}(a[s], s) & \supset & T(a, s, n i l, d o(a[s], s)) \\
\phi[s] & \supset & T(\phi ?, s, n i l, s) \\
T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\delta ; \gamma, s, \delta^{\prime} ; \gamma, s^{\prime}\right) \\
\text { Final }(\gamma, s) \wedge T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\gamma ; \delta, s, \delta^{\prime}, s^{\prime}\right) \\
T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\delta \mid \gamma, s, \delta^{\prime}, s^{\prime}\right) \\
T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\gamma \mid \delta, s, \delta^{\prime}, s^{\prime}\right) \\
T\left(\delta_{x}^{v}, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\pi v . \delta, s, \delta^{\prime}, s^{\prime}\right) \\
T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\delta^{*}, s, \delta^{\prime} ; \delta^{*}, s^{\prime}\right) \\
T\left(\delta_{\left[E n v: P_{i}(\vec{t})\right]}^{P_{i}(\vec{t})}, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left(\{E n v ; \delta\}, s, \delta^{\prime}, s^{\prime}\right) \\
T\left(\left\{E n v ; \delta_{P}^{v_{P}}\right\}, s, \delta^{\prime}, s^{\prime}\right) & \supset & T\left([E n v: P(\vec{t})], s, \delta^{\prime}, s^{\prime}\right)
\end{array}
$$

Definition of Final

Final $(\delta, s) \equiv \forall F .[\ldots \supset F(\delta, s)]$, where \ldots stands for the conjunction of the universal closure of the following implications:

$$
\begin{array}{rll}
\text { True } & \supset & F(n i l, s) \\
F(\delta, s) \wedge F(\gamma, s) & \supset & F(\delta ; \gamma, s) \\
F(\delta, s) & \supset & F(\delta \mid \gamma, s) \\
F(\delta, s) & \supset & F(\gamma \mid \delta, s) \\
F\left(\delta_{x}^{v}, s\right) & \supset & F(\pi v, \delta, s) \\
T r u e & \supset & F\left(\delta^{*}, s\right) \\
F\left(\delta_{\left[E n v: P_{i}(\vec{t}]\right)}^{P}, s\right) & \supset & F(\{E n v ; \delta\}, s) \\
F\left(\left\{E n v ; \delta_{P}^{v_{P}^{P}}, s\right)\right. & \supset & F([E n v: P(\vec{t}]], s)
\end{array}
$$

Concurrency

ConGolog is an extension of Golog that incorporates a rich account of concurrency:

- concurrent processes,
- priorities,
- high-level interrupts.

We model concurrent processes by interleaving: A concurrent execution of two processes is one where the primitive actions in both processes occur, interleaved in some fashion.

It is OK for a process to remain blocked for a while, the other processes will continue and eventually unblock it.

Congolog

The ConGolog language is exactly like Golog except with the following additional constructs:

```
if \phi}\mathrm{ then }\mp@subsup{\delta}{1}{}\mathrm{ else }\mp@subsup{\delta}{2}{}\mathrm{ ,
while }\phi\mathrm{ do }\delta\mathrm{ ,
( }\mp@subsup{\delta}{1}{||}\mp@subsup{\delta}{2}{2}\mathrm{ ),
(\delta1}>>\mp@subsup{\delta}{2}{})
\delta|
<\phi}->\delta>
```

synchronized conditional
synchronized loop concurrent execution
concurrency with different priorities concurrent iteration interrupt.

The constructs if ϕ then δ_{1} else δ_{2} and while ϕ do δ are the synchronized: testing the condition ϕ does not involve a transition per se, the evaluation of the condition and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent programming.

Transition rules: concurrency

Conc:

$$
\frac{\left(\delta_{1} \| \delta_{2}, s\right) \longrightarrow\left(\delta_{1}^{\prime} \| \delta_{2}, s^{\prime}\right)}{\left(\delta_{1}, s\right) \longrightarrow\left(\delta_{1}^{\prime}, s^{\prime}\right)} \quad \frac{\left(\delta_{1} \| \delta_{2}, s\right) \longrightarrow\left(\delta_{1} \| \delta_{2}^{\prime}, s^{\prime}\right)}{\left(\delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right)}
$$

PriorConc:

$$
\frac{\left.\left.\left.\left.\left(\delta_{1}\right\rangle\right\rangle \delta_{2}, s\right) \longrightarrow\left(\delta_{1}^{\prime}\right\rangle\right\rangle \delta_{2}, s^{\prime}\right)}{\left(\delta_{1}, s\right) \longrightarrow\left(\delta_{1}^{\prime}, s^{\prime}\right)} \quad \stackrel{\left.\left.\left.\left.\left(\delta_{1}\right\rangle\right\rangle \delta_{2}, s\right) \longrightarrow\left(\delta_{1}\right\rangle\right\rangle \delta_{2}^{\prime}, s^{\prime}\right)}{\left(\delta_{2}, s\right) \longrightarrow\left(\delta_{2}^{\prime}, s^{\prime}\right) \wedge\left(\delta_{1}, s\right) \longrightarrow}
$$

IterConc :

$$
\frac{\left(\delta^{\|}, s\right) \longrightarrow\left(\delta^{\prime} \| \delta^{\|}, s^{\prime}\right)}{(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)}
$$

Interrupts :

$$
\frac{(<\phi \rightarrow \delta>, s) \longrightarrow\left(\delta^{\prime} ;<\phi \rightarrow \delta>, s^{\prime}\right)}{(\delta, s) \longrightarrow\left(\delta^{\prime}, s^{\prime}\right)} \text { if } \phi[s] \wedge \text { Interrups_running }[s]
$$

Termination rules: concurrency

Conc:

$$
\frac{\left(\delta_{1} \| \delta_{2}, s\right)^{\vee}}{\left(\delta_{1}, s\right)^{\vee} \wedge\left(\delta_{2}, s\right)^{\vee}}
$$

PrioConc : $\quad \frac{\left.\left.\left(\delta_{1}\right\rangle\right\rangle \delta_{2}, s\right)^{\vee}}{\left(\delta_{1}, s\right)^{\vee} \wedge\left(\delta_{2}, s\right)^{\vee}}$
IterConc : $\quad \frac{\left(\delta^{\|}, s\right)^{\sqrt{\prime}}}{\text { true }}$

Interrupts : $\quad \frac{(<\phi \rightarrow \delta>, s)^{\sqrt{\prime}}}{\text { true }}$ if \neg Interrups_running $[s]$

ConGolog Transition Semantics (cont.)

$$
\begin{aligned}
& \operatorname{Trans}\left(n i l, s, \delta, s^{\prime}\right) \equiv \text { False } \\
& \operatorname{Trans}\left(\alpha, s, \delta, s^{\prime}\right) \equiv \\
& \quad \operatorname{Poss}(\alpha[s], s) \wedge \delta=\operatorname{nil} \wedge s^{\prime}=\operatorname{do}(\alpha[s], s) \\
& \operatorname{Trans}\left(\phi ?, s, \delta, s^{\prime}\right) \equiv \phi[s] \wedge \delta=\operatorname{nil} \wedge s^{\prime}=s \\
& \operatorname{Trans}\left(\left[\delta_{1} ; \delta_{2}\right], s, \delta, s^{\prime}\right) \equiv \\
& \quad \operatorname{Final}\left(\delta_{1}, s\right) \wedge \operatorname{Trans}\left(\delta_{2}, s, \delta, s^{\prime}\right) \vee \\
& \quad \exists \delta^{\prime} . \delta=\left(\delta^{\prime} ; \delta_{2}\right) \wedge \operatorname{Trans}\left(\delta_{1}, s, \delta^{\prime}, s^{\prime}\right) \\
& \operatorname{Trans}\left(\left[\delta_{1} \mid \delta_{2}\right], s, \delta, s^{\prime}\right) \equiv \\
& \quad \operatorname{Trans}\left(\delta_{1}, s, \delta, s^{\prime}\right) \vee \operatorname{Trans}\left(\delta_{2}, s, \delta, s^{\prime}\right) \\
& \operatorname{Trans}\left(\pi x \delta, s, \delta, s^{\prime}\right) \equiv \exists x \cdot \operatorname{Trans}\left(\delta, s, \delta, s^{\prime}\right)
\end{aligned}
$$

In this semantics, Trans and Final are predicates that take programs as arguments. So need to introduce terms that denote programs (reify programs). In the third axiom, ϕ is a term that denotes a formula, and $\phi[s]$ stands for $\operatorname{Holds}(\phi, s)$, which is true iff the formula denoted by ϕ is true in s. Details are in [DLLO0].

ConGolog Transition Semantics (cont.)

```
\(\operatorname{Trans}\left(\delta^{*}, s, \delta, s^{\prime}\right) \equiv \exists \delta^{\prime} . \delta=\left(\delta^{\prime} ; \delta^{*}\right) \wedge \operatorname{Trans}\left(\delta, s, \delta^{\prime}, s^{\prime}\right)\)
\(\operatorname{Trans}\) (if \(\phi\) then \(\delta_{1}\) else \(\delta_{2}, s, \delta, s^{\prime}\) ) \(\equiv\)
    \(\phi(s) \wedge \operatorname{Trans}\left(\delta_{1}, s, \delta, s^{\prime}\right) \vee \neg \phi(s) \wedge \operatorname{Trans}\left(\delta_{2}, s, \delta, s^{\prime}\right)\)
\(\operatorname{Trans}\left(\mathbf{w h i l e} \phi \mathbf{d o} \delta, s, \delta^{\prime}, s^{\prime}\right) \equiv \phi(s) \wedge\)
    \(\exists \delta^{\prime \prime} . \delta^{\prime}=\left(\delta^{\prime \prime} ; \mathbf{w h i l e} \phi\right.\) do \(\left.\delta\right) \wedge \operatorname{Trans}\left(\delta, s, \delta^{\prime \prime}, s^{\prime}\right)\)
\(\operatorname{Trans}\left(\left[\delta_{1} \| \delta_{2}\right], s, \delta, s^{\prime}\right) \equiv \exists \delta^{\prime}\).
    \(\delta=\left(\delta^{\prime} \| \delta_{2}\right) \wedge \operatorname{Trans}\left(\delta_{1}, s, \delta^{\prime}, s^{\prime}\right) \vee\)
    \(\delta=\left(\delta_{1} \| \delta^{\prime}\right) \wedge \operatorname{Trans}\left(\delta_{2}, s, \delta^{\prime}, s^{\prime}\right)\)
\(\left.\left.\operatorname{Trans}\left(\left[\delta_{1}\right\rangle\right\rangle \delta_{2}\right], s, \delta, s^{\prime}\right) \equiv \exists \delta^{\prime}\).
    \(\left.\left.\delta=\left(\delta^{\prime}\right\rangle\right\rangle \delta_{2}\right) \wedge \operatorname{Trans}\left(\delta_{1}, s, \delta^{\prime}, s^{\prime}\right) \vee\)
    \(\left.\left.\delta=\left(\delta_{1}\right\rangle\right\rangle \delta^{\prime}\right) \wedge \operatorname{Trans}\left(\delta_{2}, s, \delta^{\prime}, s^{\prime}\right) \wedge\)
        \(\neg \exists \delta^{\prime \prime}, s^{\prime \prime} . \operatorname{Trans}\left(\delta_{1}, s, \delta^{\prime \prime}, s^{\prime \prime}\right)\)
\(\operatorname{Trans}\left(\delta^{\|}, s, \delta^{\prime}, s^{\prime}\right) \equiv\)
    \(\exists \delta^{\prime \prime} . \delta^{\prime}=\left(\delta^{\prime \prime} \| \delta^{\|}\right) \wedge \operatorname{Trans}\left(\delta, s, \delta^{\prime \prime}, s^{\prime}\right)\)
```


ConGolog Transition Semantics (cont.)

```
Final(nil, s) \(\equiv\) True
Final \((\alpha, s) \equiv\) False
Final \((\phi ?, s) \equiv\) False
\(\operatorname{Final}\left(\left[\delta_{1} ; \delta_{2}\right], s\right) \equiv \operatorname{Final}\left(\delta_{1}, s\right) \wedge \operatorname{Final}\left(\delta_{2}, s\right)\)
\(\operatorname{Final}\left(\left[\delta_{1} \mid \delta_{2}\right], s\right) \equiv \operatorname{Final}\left(\delta_{1}, s\right) \vee \operatorname{Final}\left(\delta_{2}, s\right)\)
\(\operatorname{Final}(\pi x \delta, s) \equiv \exists x . \operatorname{Final}(\delta, s)\)
\(\operatorname{Final}\left(\delta^{*}, s\right) \equiv \operatorname{True}\)
\(\operatorname{Final}\left(\right.\) if \(\phi\) then \(\delta_{1}\) else \(\left.\delta_{2}, s\right) \equiv\)
    \(\phi(s) \wedge \operatorname{Final}\left(\delta_{1}, s\right) \vee \neg \phi(s) \wedge \operatorname{Final}\left(\delta_{2}, s\right)\)
\(\operatorname{Final}(\) while \(\phi\) do \(\delta, s) \equiv\)
    \(\phi(s) \wedge \operatorname{Final}(\delta, s) \vee \neg \phi(s)\)
\(\operatorname{Final}\left(\left[\delta_{1} \| \delta_{2}\right], s\right) \equiv \operatorname{Final}\left(\delta_{1}, s\right) \wedge \operatorname{Final}\left(\delta_{2}, s\right)\)
\(\left.\left.\operatorname{Final}\left(\left[\delta_{1}\right\rangle\right\rangle \delta_{2}\right], s\right) \equiv \operatorname{Final}\left(\delta_{1}, s\right) \wedge \operatorname{Final}\left(\delta_{2}, s\right)\)
\(\operatorname{Final}\left(\delta^{\|}, s\right) \equiv\) True
```


ConGolog Transition Semantics (cont.)

Then, define relation $\operatorname{Do}\left(\delta, s, s^{\prime}\right)$ meaning that process δ, when executed starting in situation s, has s^{\prime} as a legal terminating situation:

$$
D o\left(\delta, s, s^{\prime}\right) \stackrel{\text { def }}{=} \exists \delta^{\prime} \cdot \operatorname{Trans}^{*}\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \wedge \operatorname{Final}\left(\delta^{\prime}, s^{\prime}\right)
$$

where Trans* is the transitive closure of Trans. That is, $\operatorname{Do}\left(\delta, s, s^{\prime}\right)$ holds iff the starting configuration (δ, s) can evolve into a configuration (δ, s^{\prime}) by doing a finite number of transitions and Final $\left(\delta, s^{\prime}\right)$.

$$
\operatorname{Trans}^{*}\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \stackrel{\text { def }}{=} \forall T\left[\ldots \supset T\left(\delta, s, \delta^{\prime}, s^{\prime}\right)\right]
$$

where the ellipsis stands for:

$$
\begin{aligned}
& \forall s . T(\delta, s, \delta, s) \wedge \\
& \forall s, \delta^{\prime}, s^{\prime}, \delta^{\prime \prime}, s^{\prime \prime} \cdot T\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \wedge \\
& \quad \operatorname{Trans}\left(\delta^{\prime}, s^{\prime}, \delta^{\prime \prime}, s^{\prime \prime}\right) \supset T\left(\delta, s, \delta^{\prime \prime}, s^{\prime \prime}\right)
\end{aligned}
$$

Induction principles

From such definitions, natural "induction principles" emerge:

These are principles saying that to prove that a property P holds for instances of Trans and Final, it suffices to prove that the property P is closed under the assertions in the definition of Trans and Final, i.e.:

$$
\begin{aligned}
& \Phi_{\text {Trans }}\left(P, \delta_{1}, s_{1}, \delta_{2}, s_{2}\right) \equiv P\left(\delta_{1}, s_{1}, \delta_{2}, s_{2}\right) \\
& \Phi_{\text {Final }}\left(P, \delta_{1}, s_{1}\right) \equiv P\left(\delta_{1}, s_{1}\right)
\end{aligned}
$$

Theorem: The following sentences are consequences of the second-order definitions of Trans and Final respectively:

$$
\begin{aligned}
& \forall P \cdot\left[\forall \delta_{1}, s_{1}, \delta_{2}, s_{2} . \Phi_{\text {Trans }}\left(P, \delta_{1}, s_{1}, \delta_{2}, s_{2}\right) \equiv P\left(\delta_{1}, s_{1}, \delta_{2}, s_{2}\right)\right] \supset \\
& \forall \delta, s, \delta^{\prime}, s^{\prime} . \text { Trans }\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \supset P\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \\
& \forall P \cdot\left[\forall \delta_{1}, s_{1} \cdot \Phi_{\text {Final }}\left(P, \delta_{1}, s_{1}\right) \equiv P\left(\delta_{1}, s_{1}\right)\right] \supset \\
& \forall \delta, s . \text { Final }\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \supset P(\delta, s)
\end{aligned}
$$

Proof

We prove only the first sentence. The proof of the second sentence is analogous.
By definition we have:

$$
\begin{aligned}
& \forall \delta, s, \delta^{\prime}, s^{\prime} . \operatorname{Trans}\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \equiv \\
& \forall P .\left[\forall \delta_{1}, s_{1}, \delta_{2}, s_{2} . \Phi_{\text {Trans }}\left(P, \delta_{1}, s_{1}, \delta_{2}, s_{2}\right) \equiv P\left(\delta_{1}, s_{1}, \delta_{2}, s_{2}\right)\right] \\
& \quad \supset P\left(\delta, s, \delta^{\prime}, s^{\prime}\right)
\end{aligned}
$$

By considering the only-if part of the above equivalence, we get:

$$
\begin{aligned}
& \forall \delta, s, \delta^{\prime}, s^{\prime} . \operatorname{Trans}\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \wedge \\
& \quad \forall P \cdot\left[\forall \delta_{1}, s_{1}, \delta_{2}, s_{2} . \Phi_{\text {Trans }}\left(P, \delta_{1}, s_{1}, \delta_{2}, s_{2}\right) \equiv P\left(\delta_{1}, s_{1}, \delta_{2}, s_{2}\right)\right] \\
& \quad \supset P\left(\delta, s, \delta^{\prime}, s^{\prime}\right)
\end{aligned}
$$

So moving the quantifiers around we get:

$$
\begin{aligned}
& \forall P \cdot\left[\forall \delta_{1}, s_{1}, \delta_{2}, s_{2} . \Phi_{\text {Trans }}\left(P, \delta_{1}, s_{1}, \delta_{2}, s_{2}\right) \equiv P\left(\delta_{1}, s_{1}, \delta_{2}, s_{2}\right)\right] \wedge \\
& \quad \forall \delta, s, \delta^{\prime}, s^{\prime} . \operatorname{Trans}\left(\delta, s, \delta^{\prime}, s^{\prime}\right) \\
& \quad \supset P\left(\delta, s, \delta^{\prime}, s^{\prime}\right)
\end{aligned}
$$

and hence the thesis.

Bisimulation

Bisimulation is a relation \sim satisfing the condition:

$$
\begin{aligned}
& \left(\delta_{1}, s_{1}\right) \sim\left(\delta_{2}, s_{2}\right) \supset \\
& \begin{aligned}
&\left(\delta_{1}, s_{1}\right) \vee \\
& \forall\left(\delta_{1}^{\prime}, s_{1}^{\prime}\right) \cdot\left(\delta_{1}, s_{1}\right) \longrightarrow\left(s_{2}\right)^{\vee} \wedge \\
& \exists\left(\delta_{2}^{\prime}, s_{2}^{\prime}\right) \cdot\left(\delta_{2}, s_{2}\right) \longrightarrow\left(s_{1}^{\prime}\right) \supset \\
& \forall\left(\delta_{2}^{\prime}, s_{2}^{\prime}\right) \cdot\left(\delta_{2}, s_{2}\right) \longrightarrow\left(s_{2}^{\prime}\right) \wedge\left(\delta_{1}^{\prime}, s_{1}^{\prime}\right) \sim\left(\delta_{2}^{\prime}, s_{2}^{\prime}\right) \supset \\
& \exists\left(\delta_{1}^{\prime}, s_{1}^{\prime}\right) \cdot\left(\delta_{1}, s_{1}\right) \longrightarrow\left(\delta_{1}^{\prime}, s_{1}^{\prime}\right) \wedge\left(\delta_{2}^{\prime}, s_{2}^{\prime}\right) \sim\left(\delta_{1}^{\prime}, s_{1}^{\prime}\right)
\end{aligned}
\end{aligned}
$$

(δ_{1}, s_{1}) and (δ_{2}, s_{2}) are bisimilar if there exists a bisimulation between the two.
Note: it can be shown that bisimilarity is an equivalence relation.

