
Golog semantics

Golog/ConGolog programs are syntactic objects.

How do we assign a formal semantics to them?

Let us first consider Golog only.

For simplicity we will not consider procedures, but see [DLL-AIJ00,LRLLS97].

35

Golog semantics (cont.)

We start by considering a single model of the SitCalc action theory.
(That is we start by assuming complete information, just as in normal
computer programs)

Any idea of what the semantics should talk about?

36

Evaluation semantics: intro
Idea: describe the overall result of the evaluation of the Golog program.

Given a Golog program δ and a situation s compute the situation s′ obtained by
executing δ in s.

More formally: Define the relation:

(δ, s)−−−→ s′

where δ is a program, s is the situation in which the program is evaluated, and s′ is
the situation obtained by the evaluation.

Such a relation can be defined inductively in a standard way using the so called
evaluation (structural) rules

37

Evaluation semantics: references
The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This whole-computation semantics is often call: evaluation semantics or natural se-
mantics or computation semantic.

38

Evaluation rules for Golog: deterministic constructs

Act :
(a, s)−−−→ do(a[s], s)

true
if Poss(a[s], s)

Test :
(φ?, s)−−−→ s

true
if φ[s]

Seq :
(δ1; δ2, s)−−−→ s′

(δ1, s)−−−→ s′′ ∧ (δ2, s′)−−−→ s′

if :
(if φ then δ1else δ2, s)−−−→ s′

(δ1, s)−−−→ s′
if φ[s]

(if φ then δ1else δ2, s)−−−→ s′

(δ2, s)−−−→ s′
if ¬φ[s]

while :
(while φ do δ, s)−−−→ s

true
if φ[s]

(while φ do δ, s)−−−→ s′

(δ, s)−−−→ s′′ ∧ (while φ do δ s′′)−−−→ s′
if ¬φ[s]

39

Evaluation rules: nondeterministic constructs

Nondetbranch :
(δ1 | δ2, s)−−−→ s′

(δ1, s)−−−→ s′
(δ1 | δ2, s)−−−→ s′

(δ2, s)−−−→ s′

Nondetchoice :
(π x. δ(x), s)−−−→ s′

(δ(t), s)−−−→ s′
(for any t)

Nondetiter :
(δ∗, s)−−−→ s

true

(δ∗, s)−−−→ s′

(δ, s)−−−→ s′′ ∧ (δ∗, s′′)−−−→ s′

40

Structural rules
The structural rules have the following schema:

CONSEQUENT

ANTECEDENT
if SIDE-CONDITION

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION ⊃ CONSEQUENT)

where ∀Q stands for the universal closure of all free variables occurring in Q, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

Given a model of the SitCalc action theory, the structural rules define inductively a
relation, namely: the smallest relation satisfying the rules.

41

Examples

Compute the following assuming actions are always possible:

• (a; b, S0)−−−→ sf

• ((a | b); c, S0)−−−→ sf

• ((a | b); c;P?, S0)−−−→ sf where P true iff a is not performed yet.

42

Getting logical

Till now we have defined the relation (δ, s)−−−→ s′ in a single model of
the SitCalc action theory of interest.

But what about if the action theory has incomplete information and
hence admits several models?

Idea: Define a logical predicate Do(δ, s, s′) starting from the definition
of the relation (δ, s)−−−→ s′.

43

Definition of Do: intro

How: do we define a logical predicate Do(δ, s, s′) starting from the
definition of the relation (δ, s)−−−→ s′?

• Rules correspond to logical conditions;

• The minimal predicate satisfying the rules is expressible in 2nd-
order logic by using the formulas of the following form:

∀D.{
logical formulas corresponding to the rules
that use the predicate variable D in place of the relation

} ⊃ D(δ, s, s′).

44

Definition of Do
Do(δ, s, s′) ≡

∀D.{

∀[Poss(a[s], s) ⊃ D(a, s, do(a[s], s))] ∧

∀[φ[s] ⊃ D(φ?, s, s)] ∧

∀[D(δ1, s, s′′) ∧D(δ2, s′′, s′) ⊃ D(δ1; δ2, s, s′)]] ∧

∀[φ[s] ∧D(δ1, s, s′) ∨ ¬φ[s] ∧D(δ2, s, s′)] ⊃ D(if φ then δ1else δ2, s, s′)] ∧

∀[φ[s] ∧ s′ = s ∨ ¬φ[s] ∧D(δ2, s, s′) ∧D(while φ do δ, s, s′) ⊃ D(while φ do δ, s, s′)] ∧

∀[D(δ1, s, s′) ∨ D(δ2, s′′, s′) ⊃ D(δ1 | δ2, s, s′)] ∧

∀[D(δ(t), s, s′) ⊃ D(π x. δ(x), s, s′)] ∧

∀[s′ = s ∨ D(δ, s, s′′) ∧D(δ∗, s′′, s′) ⊃ D(δ∗, s, s′)] ∧

} ⊃ D(δ, s, s′).

45

Examples

Assuming the action theory Γ does not logically implies Poss(a, S0),
but all other actions are possible, find all sf that constitute (certain)
executions of the programs seen before, i.e., such that the following
logical implication holds:

• Γ |= Do(a; c, S0, sf)

• Γ |= Do((a | b); c, S0, sf)

• Γ |= Do((a | b); c;P?, S0, sf) where P holds iff a is not performed yet.

46

Original Definition of Do

In [LRLLS97], Do(δ, s, s′) is defined by induction on the structure of
the program instead of using structural rules as above.

The main advantage of this definition is that Do(δ, s, s′) can be is sim-
ply viewed as an abbreviation for a formula of the SitCalc.

Programs do not even need to be formally introduced!!!

47

Original Definition of Do (cont.)

Act : Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s)

Test : Do(φ?, s, s′)
def
= φ[s] ∧ s = s′

Seq : Do(δ1; δ2, s, s′)
def
= ∃s′′. Do(δ1, s, s′′) ∧Do(δ2, s′′, s′)

Nondetbranch : Do(δ1 | δ2, s, s′)
def
= Do(δ1, s, s′) ∨Do(δ2, s, s′)

Nondetchoice : Do(π x. δ(x), s, s′)
def
= ∃x. Do(δ(x), s, s′)

Nondetiter : It is not definable in 1st-order logic! ...

48

Original Definition of Do (cont. 2)
Nondeterministic iteration:

Do(δ∗, s, s′)
def
= ∀P.{

∀[P (s, s)] ∧
∀[P (s, s′′) ∧Do(δ, s′′, s′) ⊃ P (s, s′)]

} ⊃ P (s, s′).

i.e., doing action δ zero or more times takes you from s to s′ iff (s, s′) is in every set
(and thus, the smallest set) s.t.:

1. (s, s) is in the set for all situations s.

2. Whenever (s, s′′) is in the set, and doing δ in situation s′′ takes you to situation
s′, then (s, s′′) is in the set.

Must use 2nd-order logic because transitive closure is not 1st-order definable.

49

And concurrency?

Unfortunately evaluation semantics does not extend to construct for
concurrency.

We need a finer form of semantics, namely Transition Semantics,
where we specify what executing a single step of the program amounts
to.

50

Transition semantics: intro
Idea: describe the result of executing a single step of the Golog program.

• Given a Golog program δ and a situation s compute the situation s′ and the
program δ′ that remains to be executed obtained by executing a single
step of δ in s.

• Assert when a Golog program δ can be considered successfully terminated
in a situation s.

1

Transition semantics: intro
More formally:

• Define the relation, named Trans and denoted by “−−−→”):

(δ, s)−−−→(δ′, s′)

where δ is a program, s is the situation in which the program is executed, and s′

is the situation obtained by executing a single step of δ and δ′ is what remains
to be executed of δ after such a single step.

• Define a predicate. named Final and denoted by “
√
”:

(δ, s)
√

where δ is a program that can be considered (successfully) terminated in the
situation s.

Such a relation and predicate can be defined inductively in a standard way, using the
so called transition (structural) rules

2

Transition semantics: references
The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This single-step semantics is often call: transition semantics or computation seman-
tics.

3

Transition rules for Golog: deterministic constructs

Act :
(a, s)−−−→(nil, do(a[s], s))

true
if Poss(a[s], s)

Test :
(φ?, s)−−−→(nil, s)

true
if φ[s]

Seq :
(δ1; δ2, s)−−−→(δ′1; δ2, s′)

(δ1, s)−−−→(δ′1; s′)

(δ1; δ2, s)−−−→(δ′2, s
′)

(δ2, s)−−−→(δ′2; s′)
if (δ1, s)

√

if :
(if φ then δ1else δ2, s)−−−→(δ′1, s

′)

(δ1, s)−−−→(δ′1, s
′)

if φ[s]
(if φ then δ1else δ2, s)−−−→(δ′2, s

′)

(δ2, s)−−−→(δ′2, s
′)

if ¬φ[s]

while :
(while φ do δ, s)−−−→(δ′;while φ do δ, s)

(δ, s)−−−→(δ′, s′)
if φ[s]

4

Termination rules for Golog: deterministic constructs

Nil :
(nil, s)

√

true

Seq :
(δ1; δ2, s)

√

(δ1, s)
√
∧ (δ2; s)

√

if :
(if φ then δ1else δ2, s)

√

(δ1, s)
√ if φ[s]

(if φ then δ1else δ2, s)
√

(δ2, s)
√ if ¬φ[s]

while :
(while φ do δ, s)

√

true
if ¬φ[s]

(while φ do δ, s)
√

(δ, s)
√ if φ[s]

5

Transition rules: nondeterministic constructs

Nondetbranch :
(δ1 | δ2, s)−−−→(δ′1, s

′)

(δ1, s)−−−→(δ′1, s
′)

(δ1 | δ2, s)−−−→(δ′2, s
′)

(δ2, s)−−−→(δ′2, s
′)

Nondetchoice :
(π x. δ(x), s)−−−→(δ′(t), s′)

(δ(t), s)−−−→(δ′(t), s′)
(for any t)

Nondetiter :
(δ∗, s)−−−→(δ′; δ∗, s′)

(δ, s)−−−→(δ′, s′)

6

Termination rules: nondeterministic constructs

Nondetbranch :
(δ1 | δ2, s)

√

(δ1, s)
√
∨ (δ2, s)

√

Nondetchoice :
(π x. δ(x), s)

√

(δ(t), s)
√ (for some t)

Nondetiter :
(δ∗, s)

√

true

7

Structural rules
The structural rules have the following schema:

CONSEQUENT

ANTECEDENT
if SIDE-CONDITION

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION ⊃ CONSEQUENT)

where ∀Q stands for the universal closure of all free variables occurring in Q, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

Given a model of the SitCalc action theory, the structural rules define inductively a
relation, namely: the smallest relation satisfying the rules.

8

Examples

Compute the following assuming actions are always possible:

• (a; b, S0)−−−→(nil; b, do(a, S0))−−−→(nil, do(b(do(a, S0)))

• ((a | b); c, S0)−−−→???

• ((a | b); c;P?, S0)−−−→???

• (a; (b | c), S0)−−−→???

• ((a; b | a; c), S0)−−−→???

where P true iff a is not performed yet.

9

Evaluation vs. transition semantics

How do we characterize a whole computation using single steps?

First we define the relation, named Trans∗, denoted by −−−→∗ by the
following rules:

0steps :
(δ, s)−−−→∗(δ, s)

true

nsteps :
(δ, s)−−−→∗(δ′′, s′′)

(δ, s)−−−→(δ′, s′) ∧ (δ′, s′)−−−→∗(δ′′, s′′)
(for some δ′, s′)

Then it can be shown that:

(δ, s0)−−−−−→ sf ≡
(δ, s0)−−−→∗(δf , s0) ∧ (δf , sf)

√
for some δf

10

Getting logical

Till now we have defined the relation (δ, s)−−−→(δ′, s′) and the predi-
cate (δ, s)

√
in a single model of the SitCalc action theory of interest.

But what about if the action theory has incomplete information and
hence admits several models?

Idea: Define a logical predicates Trans(δ, s, δ′, s′) and Final(δ, s)
starting from the definitions of the relation (δ, s)−−−→(δ′, s′), and (δ, s)

√
.

11

Definition of Do: intro

How: do we define a logical predicate Trans(δ, s, δ′, s′) starting from
the definition of the relation (δ, s)−−−→(δ′, s′)? and the predicate
(δ, s)

√
.

• Rules correspond to logical conditions;

• The minimal predicate satisfying the rules is expressible in 2nd-
order logic by using the formulas of the following form (for Trans,
similarly for Final):

∀T.{
logical formulas corresponding to the rules
that use the predicate variable T in place of the relation

} ⊃ T (δ, s, δ′, s′).

12

Definition of Trans
Trans(δ, s, δ′, s′) ≡ ∀T.[. . . ⊃ T (δ, s, δ′, s′)], where . . . stands for the conjunction of the universal
closure of the following implications:

Poss(a[s], s) ⊃ T (a, s, nil, do(a[s], s))

φ[s] ⊃ T (φ?, s, nil, s)

T (δ, s, δ′, s′) ⊃ T (δ; γ, s, δ′; γ, s′)

Final(γ, s) ∧ T (δ, s, δ′, s′) ⊃ T (γ; δ, s, δ′, s′)

T (δ, s, δ′, s′) ⊃ T (δ | γ, s, δ′, s′)

T (δ, s, δ′, s′) ⊃ T (γ | δ, s, δ′, s′)

T (δv
x, s, δ

′, s′) ⊃ T (πv.δ, s, δ′, s′)

T (δ, s, δ′, s′) ⊃ T (δ∗, s, δ′; δ∗, s′)

T (δPi(%t)
[Env:Pi(%t)]

, s, δ′, s′) ⊃ T ({Env; δ}, s, δ′, s′)

T ({Env; δP
%vP

%t[s]
}, s, δ′, s′) ⊃ T ([Env : P (%t)], s, δ′, s′)

13

Definition of Final
Final(δ, s) ≡ ∀F.[. . . ⊃ F (δ, s)], where . . . stands for the conjunction of the universal closure
of the following implications:

True ⊃ F (nil, s)

F (δ, s) ∧ F (γ, s) ⊃ F (δ; γ, s)

F (δ, s) ⊃ F (δ | γ, s)

F (δ, s) ⊃ F (γ | δ, s)

F (δv
x, s) ⊃ F (πv.δ, s)

True ⊃ F (δ∗, s)

F (δPi(%t)
[Env:Pi(%t)]

, s) ⊃ F ({Env; δ}, s)

F ({Env; δP
%vP

%t[s]
, s) ⊃ F ([Env : P (%t)], s)

14

Concurrency

ConGolog is an extension of Golog that incorporates a rich account of
concurrency:

• concurrent processes,

• priorities,

• high-level interrupts.

We model concurrent processes by interleaving: A concurrent ex-
ecution of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion.

It is OK for a process to remain blocked for a while, the other pro-
cesses will continue and eventually unblock it.

15

Congolog

The ConGolog language is exactly like Golog except with the following
additional constructs:

if φ then δ1 else δ2, synchronized conditional
while φ do δ, synchronized loop
(δ1 ‖ δ2), concurrent execution
(δ1 〉〉 δ2), concurrency with different priorities
δ||, concurrent iteration
<φ → δ>, interrupt.

The constructs if φ then δ1 else δ2 and while φ do δ are the synchronized: testing
the condition φ does not involve a transition per se, the evaluation of the condition
and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent
programming.

16

Transition rules: concurrency

Conc :
(δ1 ‖ δ2, s)−−−→(δ′1 ‖ δ2, s′)

(δ1, s)−−−→(δ′1, s
′)

(δ1 ‖ δ2, s)−−−→(δ1 ‖ δ′2, s
′)

(δ2, s)−−−→(δ′2, s
′)

PriorConc :
(δ1 〉〉 δ2, s)−−−→(δ′1 〉〉 δ2, s′)

(δ1, s)−−−→(δ′1, s
′)

(δ1 〉〉 δ2, s)−−−→(δ1 〉〉 δ′2, s
′)

(δ2, s)−−−→(δ′2, s
′) ∧ (δ1, s)−−−→-

IterConc :
(δ||, s)−−−→(δ′ ‖ δ||, s′)

(δ, s)−−−→(δ′, s′)

Interrupts :
(<φ → δ>, s)−−−→(δ′;<φ → δ>, s′)

(δ, s)−−−→(δ′, s′)
if φ[s] ∧ Interrups running[s]

17

Termination rules: concurrency

Conc :
(δ1 ‖ δ2, s)

√

(δ1, s)
√
∧ (δ2, s)

√

PrioConc :
(δ1 〉〉 δ2, s)

√

(δ1, s)
√
∧ (δ2, s)

√

IterConc :
(δ||, s)

√

true

Interrupts :
(<φ → δ>, s)

√

true
if ¬Interrups running[s]

18

ConGolog Transition Semantics (cont.)

Trans(nil, s, δ, s′) ≡ False
Trans(α, s, δ, s′) ≡

Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s)
Trans(φ?, s, δ, s′) ≡ φ[s] ∧ δ = nil ∧ s′ = s
Trans([δ1; δ2], s, δ, s′) ≡

Final(δ1, s) ∧ Trans(δ2, s, δ, s′) ∨
∃δ′.δ = (δ′; δ2) ∧ Trans(δ1, s, δ′, s′)

Trans([δ1 | δ2], s, δ, s′) ≡
Trans(δ1, s, δ, s′) ∨ Trans(δ2, s, δ, s′)

Trans(π x δ, s, δ, s′) ≡ ∃x.Trans(δ, s, δ, s′)

In this semantics, Trans and Final are predicates that take programs
as arguments. So need to introduce terms that denote programs (reify
programs). In the third axiom, φ is a term that denotes a formula, and
φ[s] stands for Holds(φ, s), which is true iff the formula denoted by φ
is true in s. Details are in [DLL00].

19

ConGolog Transition Semantics (cont.)

Trans(δ∗, s, δ, s′) ≡ ∃δ′.δ = (δ′; δ∗) ∧ Trans(δ, s, δ′, s′)
Trans(if φ then δ1 else δ2, s, δ, s′) ≡

φ(s) ∧ Trans(δ1, s, δ, s′) ∨ ¬φ(s) ∧ Trans(δ2, s, δ, s′)
Trans(while φ do δ, s, δ′, s′) ≡ φ(s) ∧
∃δ′′. δ′ = (δ′′;while φ do δ) ∧ Trans(δ, s, δ′′, s′)

Trans([δ1 ‖ δ2], s, δ, s′) ≡ ∃δ′.
δ = (δ′ ‖ δ2) ∧ Trans(δ1, s, δ′, s′) ∨
δ = (δ1 ‖ δ′) ∧ Trans(δ2, s, δ′, s′)

Trans([δ1 〉〉 δ2], s, δ, s′) ≡ ∃δ′.
δ = (δ′ 〉〉 δ2) ∧ Trans(δ1, s, δ′, s′) ∨
δ = (δ1 〉〉 δ′) ∧ Trans(δ2, s, δ′, s′) ∧

¬∃δ′′, s′′.T rans(δ1, s, δ′′, s′′)
Trans(δ||, s, δ′, s′) ≡
∃δ′′.δ′ = (δ′′ ‖ δ||) ∧ Trans(δ, s, δ′′, s′)

20

ConGolog Transition Semantics (cont.)

Final(nil, s) ≡ True

F inal(α, s) ≡ False

F inal(φ?, s) ≡ False

F inal([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final([δ1 | δ2], s) ≡ Final(δ1, s) ∨ Final(δ2, s)
Final(π x δ, s) ≡ ∃x.F inal(δ, s)
Final(δ∗, s) ≡ True

F inal(if φ then δ1 else δ2, s) ≡
φ(s) ∧ Final(δ1, s) ∨ ¬φ(s) ∧ Final(δ2, s)

Final(while φ do δ, s) ≡
φ(s) ∧ Final(δ, s) ∨ ¬φ(s)

Final([δ1 ‖ δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final([δ1 〉〉 δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final(δ||, s) ≡ True

21

ConGolog Transition Semantics (cont.)

Then, define relation Do(δ, s, s′) meaning that process δ, when exe-
cuted starting in situation s, has s′ as a legal terminating situation:

Do(δ, s, s′)
def
= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

where Trans∗ is the transitive closure of Trans. That is, Do(δ, s, s′)
holds iff the starting configuration (δ, s) can evolve into a configuration
(δ, s′) by doing a finite number of transitions and Final(δ, s′).

Trans∗(δ, s, δ′, s′)
def
= ∀T [. . . ⊃ T (δ, s, δ′, s′)]

where the ellipsis stands for:

∀s. T (δ, s, δ, s) ∧
∀s, δ′, s′, δ′′, s′′. T (δ, s, δ′, s′) ∧

Trans(δ′, s′, δ′′, s′′) ⊃ T (δ, s, δ′′, s′′).

22

Induction principles

From such definitions, natural “induction principles” emerge:

These are principles saying that to prove that a property P holds for
instances of Trans and Final, it suffices to prove that the property P

is closed under the assertions in the definition of Trans and Final,
i.e.:

ΦTrans(P, δ1, s1, δ2, s2) ≡ P (δ1, s1, δ2, s2)

ΦFinal(P, δ1, s1) ≡ P (δ1, s1)

Theorem: The following sentences are consequences of the second-order definitions of Trans and
Final respectively:

∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2) ≡ P (δ1, s1, δ2, s2)] ⊃
∀δ, s, δ′, s′. T rans(δ, s, δ′, s′) ⊃ P (δ, s, δ′, s′)

∀P.[∀δ1, s1.ΦFinal(P, δ1, s1) ≡ P (δ1, s1)] ⊃
∀δ, s. F inal(δ, s, δ′, s′) ⊃ P (δ, s)

23

Proof
We prove only the first sentence. The proof of the second sentence is analogous.

By definition we have:

∀δ, s, δ′, s′. T rans(δ, s, δ′, s′) ≡
∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2) ≡ P (δ1, s1, δ2, s2)]

⊃ P (δ, s, δ′, s′)

By considering the only-if part of the above equivalence, we get:

∀δ, s, δ′, s′. T rans(δ, s, δ′, s′) ∧
∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2) ≡ P (δ1, s1, δ2, s2)]

⊃ P (δ, s, δ′, s′)

So moving the quantifiers around we get:

∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2) ≡ P (δ1, s1, δ2, s2)] ∧
∀δ, s, δ′, s′. T rans(δ, s, δ′, s′)

⊃ P (δ, s, δ′, s′)

and hence the thesis.

24

Bisimulation
Bisimulation is a relation ∼ satisfing the condition:

(δ1, s1) ∼ (δ2, s2) ⊃
(δ1, s1)

√
≡ (δ2, s2)

√
∧

∀(δ′1, s′1).(δ1, s1)−−−→(δ′1, s
′
1) ⊃

∃(δ′2, s′2).(δ2, s2)−−−→(δ′2, s
′
2) ∧ (δ′1, s

′
1) ∼ (δ′2, s

′
2) ∧

∀(δ′2, s′2).(δ2, s2)−−−→(δ′2, s
′
2) ⊃

∃(δ′1, s′1).(δ1, s1)−−−→(δ′1, s
′
1) ∧ (δ′2, s

′
2) ∼ (δ′1, s

′
1)

(δ1, s1) and (δ2, s2) are bisimilar if there exists a bisimulation between the two.

Note: it can be shown that bisimilarity is an equivalence relation.

25

