
Hoare Logic

Hoare Logic is used to reason about the correctness of programs. In the
end, it reduces a program and its specification to a set of verifications

conditions.

Slides by Wishnu Prasetya
URL : www.cs.uu.nl/~wishnu
Course URL : www.cs.uu.nl/docs/vakken/pc

http://www.cs.uu.nl/~wishnu
http://www.cs.uu.nl/~wishnu
http://www.cs.uu.nl/docs/vakken/pc
http://www.cs.uu.nl/docs/vakken/pc

Overview

 Hoare triples
 Basic statements // SEQ, IF, ASG

 Composition rules for seq and if
 Assignment
 Weakest pre-condition

 Loops // WHILE
 Invariants
 Variants

2

Hoare triples

3

How do we prove our claims ?

 In Hoare logic we use inference rules.

 Usually of this form:

 A proof is essentially just a series of invocations of
inference rules, that produces our claim from known
facts and assumptions.

4

premise-1 , premise-2 , …

conclusion

5

Needed notions

 Inference rule:
 { P } S { Q } , Q ⇒ R

 { P } S { R }

is this sound?

 What does a specification mean ?
 Programs
 Predicates
 States

We’ll explain this in
term of abstract
models.

6

State

 In the sequel we will consider a program P with two
variables: x:int , y:int.

 The state of P is determined by the value of x,y. Use record
to denote a state:

 { x=0 , y=9 } // denote state where x=0 and y=9

 This notion of state is abstract! Actual state of P may
consists of the value of CPU registers, stacks etc.

 Σ denotes the space of all possible states of P.

7

Expression

 An expression can be seen as a function Σ → val

 x + 1 { x=0 , y = 9 } yields 1
 x + 1 { x=9 , y = 9 } yields 10
 etc

 A (state) predicate is an expression that returns a boolean:

 x>0 { x=0 , y = 9 } yields false
 x>0 { x=9 , y = 9 } yields true
 etc

8

Viewing predicate as set

 So, a (state) predicate P is a function Σ → bool. It induces
a set:

 χP = { s | s|= P } // the set of all states satisfying P

 P and its induced set is ‘isomorphic’ :

 P(s) = s∈χP

 Ehm … so for convenience lets just overload “P” to also
denote χP. Which one is meant, depends on the context.

 Eg. when we say “P is an empty predicate”.

9

Implication

 P ⇒ Q // P⇒ Q is valid

This means: ∀s. s|= P ⇒ s|= Q

In terms of set this is equivalent to: χP ⊆ χQ

 And to confuse you , the often used jargon:
 P is stronger than Q
 Q is weaker than P
 Observe that in term of sets, stronger means smaller!

10

Non-termination

 What does this mean?

 {s’ | s Pr s’} = ∅, for some state s

 Can be used to model: “Pr does not terminate when
executed on s”.

 However, in discussion about models, we usually assume
that our programs terminate.

 Expressing non-termination leads to some additional
complications → not really where we want to focus now.

s Pr s’ stands for (Pr,s) s’

11

Hoare triples

 Now we have enough to define abstractly what a
specification means:

{ P } Pr { Q } =
 (∀s. s|=P ⇒ (∀s’. s Pr s’ ⇒ s’ |= Q))

 Since our model cannot express non-termination, we
assume that Pr terminates.

 The interpretation of Hoare triple where termination is
assumed is called “partial correctness” interpretation.

 Otherwise it is called total correctness.

s Pr s’ stands for (Pr,s) s’

12

Now we can explain …

P Q

R
S

 { P } S { Q } , Q ⇒ R

 { P } S { R }

Post-condition weakening Rule:

{ P } S { Q }

{ P } S { R }

13

And the dual

P’ Q
S

{ P’ } S { Q }

13

And the dual

P’ Q
S

{ P’ } S { Q }

P

{ P } S { Q }

13

And the dual

P’ Q
S

P ⇒ P’ , { P’ } S { Q }

 { P } S { Q }

Pre-condition strengthening Rule:

{ P’ } S { Q }

P

{ P } S { Q }

14

Joining specifications

 Conjunction:

 { P1 } S { Q1 } , { P2 } S { Q2 }

 { P1 /\ P2 } S { Q1 /\ Q2 }

 Disjunction:

 { P1 } S { Q1 } , { P2 } S { Q2 }

 { P1 \/ P2 } S { Q1 \/ Q2 }

Reasoning about basic statements

15

1616

Rule for SEQ composition

{ P } S1 { Q }

S1

1616

Rule for SEQ composition

{ P } S1 { Q }
{ Q } S2 { R }

S1 S2

1616

Rule for SEQ composition

{ P } S1 { Q }
{ Q } S2 { R }

S1 S2

{ P } S1 ; S2 { R }

1616

Rule for SEQ composition

{ P } S1 { Q }
{ Q } S2 { R }

S1 S2

{ P } S1 ; S2 { R }

 { P } S1 { Q } , { Q } S2 { R }

 { P } S1 ; S2 { R }

1717

Rule for SEQ composition

{ P } S1 { Q }

S1

1717

Rule for SEQ composition

{ P } S1 { Q }
{ Q } S2 { R }

S1 S2

1717

Rule for SEQ composition

{ P } S1 { Q }
{ Q } S2 { R }

S1 S2

{ P } S1 ; S2 { R }

1717

Rule for SEQ composition

{ P } S1 { Q }
{ Q } S2 { R }

S1 S2

{ P } S1 ; S2 { R }

 { P } S1 { Q } , { Q } S2 { R }

 { P } S1 ; S2 { R }

1818

Rule for IF

P

1818

Rule for IF

g

¬g

P

1818

Rule for IF

{ P /\ g } S1 { Q }

Q
g

¬g

S1P

1818

Rule for IF

{ P /\ g } S1 { Q }

Q
g

¬g

S1P

S2

{ P /\ ¬g } S2 { Q }

1818

Rule for IF

{ P /\ g } S1 { Q }

Q
g

¬g

S1P

S2

{ P /\ ¬g } S2 { Q }

{ P } if g then S1 else S2 { Q }

1818

Rule for IF

{ P /\ g } S1 { Q }

Q
g

¬g

S1P

S2

{ P /\ ¬g } S2 { Q }

{ P } if g then S1 else S2 { Q }

 { P /\ g } S1 { Q } , { P /\ ¬g } S2 { Q }
--
 { P } if g then S1 else S2 { Q }

1919

Rule for Assignment

 Let see ….

 Find a pre-condition W, such that, for any begin state s, and
end state t:

 s |= W ⇔ t |= Q

 Then we can equivalently prove P ⇒ W

ts
x := e

??

{ P } x:=e { Q }

2020

Assignment, examples

 { 10 = y } x:=10 { x=y }

 { x+a = y } x:=x+a { x=y }

 So, W can be obtained by Q[e/x]

2121

Assignment

 Theorem:

 Q holds after x:=e iff Q[e/x] holds before the
 assignment.

 Express this indirectly by:

 { P } x:=e { Q } = P ⇒ Q[e/x]

 Corollary:

 { Q[e/x] } x:=e { Q } always valid.

2222

How does a proof proceed now ?

2222

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

2222

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

 Rule for SEQ requires you to come up with intermediate
assertions:

 { x≠y } tmp:= x { ? } ; x:=y { ? } ; y:=tmp { x≠y }

 What to fill ??

 Use the “Q[e/x]” suggested by the ASG theorem.
 Work in reverse direction.
 “Weakest pre-condition”

2323

Weakest Pre-condition (wp)

 “wp” is a meta function:

 wp : Stmt X Pred → Pred

 wp(S,Q) gives the weakest (largest) pre-cond such that
executing S in any state in any state in this pre-cond results
in states in Q.
 Partial correctness termination assumed
 Total correctness termination demanded

2424

Weakest pre-condition

 Let W = wp(S,Q)

 Two properties of W

 Reachability: from any s|=W, if s S s’ then s’ |= Q

 Maximality: s S s’ and s’ |= Q implies s|=W

s S s’ stands for (S,s)
s’

2525

Defining wp

 In terms of our abstract model:

 wp(S,Q) = { s | forall s’. s S s’ implies s’ |= Q }

 Abstract characterization:

 { P } S { Q } = P ⇒ wp(S,Q)

 Nice, but this is not a constructive definition (does not tell us
how to actually construct “W”)

2626

Some examples

 All these pre-conditions are the weakest:

 { y=10 } x:=10 { y=x }

 { Q } skip { Q }

 { Q[e/x] } x:=e { Q }

2626

Some examples

 All these pre-conditions are the weakest:

 { y=10 } x:=10 { y=x }

 { Q } skip { Q }

 { Q[e/x] } x:=e { Q }

 wp skip Q = Q

 wp (x:=e) Q = Q[e/x]

2727

wp of SEQ

wp ((S1 ; S2) ,Q) = wp(S1 , (wp(S2,Q)))

Q
W

= wp(S2,Q)

V

= wp(S1,W)
S2

S1

2727

wp of SEQ

wp ((S1 ; S2) ,Q) = wp(S1 , (wp(S2,Q)))

Q
W

= wp(S2,Q)

V

= wp(S1,W)
S2

S1

2727

wp of SEQ

wp ((S1 ; S2) ,Q) = wp(S1 , (wp(S2,Q)))

Q
W

= wp(S2,Q)

V

= wp(S1,W)
S2

S1

2828

wp of IF

wp((if g then S1 else S2),Q) =

 g ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

2828

wp of IF

wp((if g then S1 else S2),Q) =

 g ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

g
¬g

2828

wp of IF

wp((if g then S1 else S2),Q) =

 g ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

g
¬g

Other formulation :

2828

wp of IF

wp((if g then S1 else S2),Q) =

 g ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

g
¬g

(g ⇒ wp (S1 ,Q))
/\
(¬g ⇒ wp (S2 ,Q))

Other formulation :

Proof: homework

2929

How does a proof proceed now ?

2929

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

2929

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

n Calculate:

 W = wp((tmp:= x ; x:=y ; y:=tmp) , x≠y)

2929

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

n Calculate:

 W = wp((tmp:= x ; x:=y ; y:=tmp) , x≠y)

2929

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

n Calculate:

 W = wp((tmp:= x ; x:=y ; y:=tmp) , x≠y)

n Then prove: x≠y ⇒ W

2929

How does a proof proceed now ?

 { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }

n Calculate:

 W = wp((tmp:= x ; x:=y ; y:=tmp) , x≠y)

n Then prove: x≠y ⇒ W

 We calculate the intermediate assertions, rather than
figuring them out by hand!

30

Proof via wp

 Wp calculation is fully syntax driven. (But no while yet!)
 No human intelligence needed.
 Can be automated.

 Works, as long as we can calculate “wp” not always
possible.

 Recall this abstract def:

 { P } S { Q } = P ⇒ wp(S,Q)

It follows: if P ⇒ W not valid, then so does the original
spec.

30

30

Proof via wp

 Wp calculation is fully syntax driven. (But no while yet!)
 No human intelligence needed.
 Can be automated.

 Works, as long as we can calculate “wp” not always
possible.

 Recall this abstract def:

 { P } S { Q } = P ⇒ wp(S,Q)

It follows: if P ⇒ W not valid, then so does the original
spec.

30

W

31

Example

31

bool find(a,n,x) {

 int i = 0 ;
 bool found = false ;

 while (¬found /\ i<n) {

 found := a[i]=x ;
 i++

 }
 return found ;
}

31

Example

31

bool find(a,n,x) {

 int i = 0 ;
 bool found = false ;

 while (¬found /\ i<n) {

 found := a[i]=x ;
 i++

 }
 return found ;
}

found = (∃k : 0≤k<n : a[k]=x)

31

Example

31

bool find(a,n,x) {

 int i = 0 ;
 bool found = false ;

 while (¬found /\ i<n) {

 found := a[i]=x ;
 i++

 }
 return found ;
}

found = (∃k : 0≤k<n : a[k]=x)

found = (∃k : 0≤k<i : a[k]=x)

31

Example

31

bool find(a,n,x) {

 int i = 0 ;
 bool found = false ;

 while (¬found /\ i<n) {

 found := a[i]=x ;
 i++

 }
 return found ;
}

found = (∃k : 0≤k<n : a[k]=x)

found = (∃k : 0≤k<i : a[k]=x)

31

Example

31

bool find(a,n,x) {

 int i = 0 ;
 bool found = false ;

 while (¬found /\ i<n) {

 found := a[i]=x ;
 i++

 }
 return found ;
}

found = (∃k : 0≤k<n : a[k]=x)

found = (∃k : 0≤k<i : a[k]=x)

31

Example

31

bool find(a,n,x) {

 int i = 0 ;
 bool found = false ;

 while (¬found /\ i<n) {

 found := a[i]=x ;
 i++

 }
 return found ;
}

found = (∃k : 0≤k<n : a[k]=x)

found = (∃k : 0≤k<i : a[k]=x)

found = (∃k : 0≤k<i : a[k]=x)

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

found = (∃k : 0≤k<i+1 : a[k]=x)

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

found = (∃k : 0≤k<i+1 : a[k]=x)

wp (x:=e) Q = Q[e/x]

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

found = (∃k : 0≤k<i+1 : a[k]=x)

wp (x:=e) Q = Q[e/x]

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

found = (∃k : 0≤k<i+1 : a[k]=x)

(a[i]=x) = (∃k : 0≤k<i+1 : a[k]=x)

wp (x:=e) Q = Q[e/x]

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

found = (∃k : 0≤k<i+1 : a[k]=x)

(a[i]=x) = (∃k : 0≤k<i+1 : a[k]=x)

wp (x:=e) Q = Q[e/x]

⇒

32

Example

{ ¬found /\ ... /\ (found = (∃k : 0≤k<i : a[k]=x)) }

 found := a[i]=x ;

 i:=i+1

{ found = (∃k : 0≤k<i : a[k]=x) }

found = (∃k : 0≤k<i+1 : a[k]=x)

(a[i]=x) = (∃k : 0≤k<i+1 : a[k]=x)

0 ≤ i

wp (x:=e) Q = Q[e/x]

⇒

Reasoning about loops

33

How to prove this ?

 { P } while g do S { Q }

 Calculate wp first ?
 We don’t have to
 But wp has nice property wp completely captures the

statement:

{ P } T { Q } = P ⇒ wp T Q

34

wp of a loop ….

 Recall :

 wp(S,Q) = { s | forall s’. s S s’ implies s’|=Q }

 { P } S { Q } = P ⇒ wp(S,Q)

 But none of these definitions are actually useful to construct
the weakest pre-condition.

 In the case of a loop, a constructive definition is not obvious.
 pending.

35

How to prove this ?

 { P } while g do S { Q }

 Plan-B: try to come up with an inference rule:

 condition about g
 condition about S

 { P } while g do S { Q }

 The rule only need to be “sufficient”.

36

Idea

37

Idea

 { P } while g do S { Q }

37

Idea

 { P } while g do S { Q }

37

Idea

 { P } while g do S { Q }

 Try to come up with a predicate I that holds after each
iteration :

 iter1 : // g // ; S { I }
 iter2 : // g // ; S { I }
 …
 itern : // g // ; S { I } // last iteration!
 exit : // ¬g //

37

Idea

 { P } while g do S { Q }

 Try to come up with a predicate I that holds after each
iteration :

 iter1 : // g // ; S { I }
 iter2 : // g // ; S { I }
 …
 itern : // g // ; S { I } // last iteration!
 exit : // ¬g //

37

Idea

 { P } while g do S { Q }

 Try to come up with a predicate I that holds after each
iteration :

 iter1 : // g // ; S { I }
 iter2 : // g // ; S { I }
 …
 itern : // g // ; S { I } // last iteration!
 exit : // ¬g //

 I /\ ¬g holds as the loop exit!

37

Idea

 { P } while g do S { Q }

 Try to come up with a predicate I that holds after each
iteration :

 iter1 : // g // ; S { I }
 iter2 : // g // ; S { I }
 …
 itern : // g // ; S { I } // last iteration!
 exit : // ¬g //

 I /\ ¬g holds as the loop exit!

37

So, to get postcond Q,
sufficient to prove:

 I /\ ¬g ⇒ Q

Idea

 { P } while g do S { Q }

 Try to come up with a predicate I that holds after each
iteration :

 iter1 : // g // ; S { I }
 iter2 : // g // ; S { I }
 …
 itern : // g // ; S { I } // last iteration!
 exit : // ¬g //

 I /\ ¬g holds as the loop exit!

37

So, to get postcond Q,
sufficient to prove:

 I /\ ¬g ⇒ Q

Still need to capture this.

Idea

 while g do S

 I is to holds after each iteration

38

// g // S { I }

iter i+1

Idea

 while g do S

 I is to holds after each iteration

38

… S { I } // g // S { I }

iter i+1iter i

Idea

 while g do S

 I is to holds after each iteration

38

… S { I } // g // S { I }

iter i+1iter i

Idea

 while g do S

 I is to holds after each iteration

38

… S { I } // g // S { I }

iter i+1iter i

Sufficient to prove: { I /\ g } S { I }

Except for the first iteration !

Idea

 { P } while g do S

 For the first iteration :

// g // S { I }

Iter1

Idea

 { P } while g do S

 For the first iteration :

 { I } // g // S { I }

Iter1

Idea

 { P } while g do S

 For the first iteration :

 { I } // g // S { I }

Iter1

Recall the condition: { I /\ g } S { I }

Idea

 { P } while g do S

 For the first iteration :

 { I } // g // S { I }

Iter1We know this from
the given pre-cond

Recall the condition: { I /\ g } S { I }

 { P }

Idea

 { P } while g do S

 For the first iteration :

 { I } // g // S { I }

Iter1We know this from
the given pre-cond

Recall the condition: { I /\ g } S { I }

 { P }

Idea

 { P } while g do S

 For the first iteration :

 { I } // g // S { I }

Iter1We know this from
the given pre-cond

Recall the condition: { I /\ g } S { I }

 { P }

Additionally we need : P ⇒ I

To Summarize

 Capture this in an inference rule:

 P ⇒ I // setting up I
 { g /\ I } S { I } // invariance
 I /\ ¬g ⇒ Q // exit cond
 --
 { P } while g do S { Q }

 This rule is only good for partial correctness though.
 I satisfying the second premise above is called invariant.

40

Examples

 Prove:

{ i=0 } while i<n do i++ { i=n }

 Prove:

{ i=0 /\ s=0 }

 while i<n do { s = s +a[i] ; i++ }

{ s = SUM(a[0..n)) }

41

Note

 Recall :

wp ((while g do S),Q) =
 { s | forall s’. s (while g do S) s’ implies s’ |=
Q }

 Theoretically, we can still construct this set if the state space
is finite. The construction is exactly as the def. above says.

 You need a way to tell when the loop does not terminate:
 Maintain a history H of states after each iteration.
 Non-termination if the state t after i-th iteration is in H

from the previous iteration.
 Though then you can just as well ‘execute’ the program to

verify it (testing), for which you don’t need Hoare logic.
42

To prove
 {P} while B do S end {Q}
find invariant J and well-founded variant function vf such
that:

 invariant holds initially: P ⇒ J

 invariant is maintained: {J ∧ B} S {J}
 invariant is sufficient: J ∧¬B ⇒ Q

 variant function is bounded:
 J ∧ B ⇒ 0 ≦ vf

 variant function decreases:
 {J ∧ B ∧ vf=VF} S {vf<VF}

Tackling while termination: invariant and variant

Proving termination

 { P } while g do S { Q }

 Idea: come up with an integer expression m, satisfying :

q At the start of every iteration m ≥ 0

q Each iteration decreases m

 These imply that the loop will terminates.

44

Capturing the termination conditions

 At the start of every iteration m ≥ 0 :

 g ⇒ m ≥ 0

 If you have an invariant: I /\ g ⇒ m ≥ 0

 Each iteration decreases m :

 { I /\ g } C:=m; S { m<C }

45

To Summarize

46

To Summarize

 P ⇒ I // setting up I

 { g /\ I } S { I } // invariance
 I /\ ¬g ⇒ Q // exit cond

 { I /\ g } C:=m; S { m<C } // m decreasing
 I /\ g ⇒ m ≥ 0 // m bounded below
 --
 { P } while g do S { Q }

46

To Summarize

 P ⇒ I // setting up I

 { g /\ I } S { I } // invariance
 I /\ ¬g ⇒ Q // exit cond

 { I /\ g } C:=m; S { m<C } // m decreasing
 I /\ g ⇒ m ≥ 0 // m bounded below
 --
 { P } while g do S { Q }

 Since we also have this pre-cond strengthening rule:

 P ⇒ I , { I } while g do S { Q }
 --
 { P } while g do S { Q }

46

A Bit History and Other Things

48

49

History

 Hoare logic, due to CAR Hoare 1969.
 Robert Floyd, 1967 for Flow Chart. “Unstructured” program.
 Weakest preconditon Edsger Dijkstra, 1975.

 Early 90s: the rise of theorem provers. Hoare logic is mechanized. e.g.
“A Mechanized Hoare Logic of State Transitions” by Gordon.

 Renewed interests in Hoare Logic for automated verification: Leino et
al, 1999, “Checking Java programs via guarded commands”
Tool: ESC/Java.

 Byte code verification. Unstructured going back to Floyd. Ehm... what
did Dijkstra said again about GOTO??

50

History

 Hoare: “An axiomatic basis for computer
programming”, 1969.

 Charles Antony Richard Hoare, born 1934 in Sri Lanka
 1980 : winner of Turing Award
 Other achievement:

 CSP (Communicating Sequential Processes)
 Implementor ALGOL 60
 Quicksort
 2000 : sir Charles

51

History

 Edsger Wybe Dijkstra, 1930 in Rotterdam.
 Prof. in TU Eindhoven, later in Texas, Austin.
 1972 : winner Turing Award
 Achievement

 Shortest path algorithm
 Self-stabilization
 Semaphore
 Structured Programming, with Hoare.
 “A Case against the GO TO Statement”
 Program derivation

 Died in 2002, Nuenen.

History of Programming
Languages Giuseppe De

Giacomo
52

ALGOL-60
 ALGOL-60: “ALGOrithmic Language”

(1958-1968) by very many people IFIP(International Federation
for Information Processing) , including John Backus, Peter Naur,
Alan Perlis, Friedrich L. Bauer, John McCarthy, Niklaus Wirth,
C. A. R. Hoare, Edsger W. Dijkstra

 Join effort by Academia and Industry
 Join effort by Europe and USA
 ALGOL-60 the most influential imperative language ever
 First language with syntax formally defined (BNF)
 First language with structured control structures

 If then else
 While (several forms)
 But still goto

 First language with … (see next)
 Did not include I/O considered too hardware dependent
 ALGOL-60 revised several times in early 60’s, as understanding

of programming languages improved
 ALGOL-68 a major revision

 by 1968 concerns on data abstraction become prominent, and
ALGOL-68 addressed them

 Considered too Big and Complex by many of the people that worked
on the original ALGOL-60 (C. A. R. Hoare’ Turing Lecture, cf. ADA
later)

Edsger W. Dijkstra
(cf. shortest path,

semaphore)

C. A. R. Hoare
(cf. axiomatic semantics,

quicksort, CSP)

History of Programming
Languages Giuseppe De

Giacomo
53

ALGOL-60
 First language with syntax formally defined (BNF)

(after such a success with syntax, there was a great hope to being able to
formally define semantics in an similarly easy and accessible way: this
goal failed so far)

 First language with structured control structures
 If then else
 While (several forms)
 But still goto

 First language with procedure activations based on the STACK
(cf. recursion)

 First language with well defended parameters passing
mechanisms
 Call by value
 Call by name (sort of call by reference)
 Call by value result (later versions)
 Call by reference (later versions)

 First language with explicit typing of variables
 First language with blocks (static scope)
 Data structure primitives: integers, reals, booleans, arrays of any

dimension; (no records at first),
 Later version had also references and records (originally

introduced in COBOL), and user defined types

Edsger W. Dijkstra
(cf. shortest path,

semaphore)

C. A. R. Hoare
(cf. axiomatic semantics,

quicksort, CSP)

Unstructured programs

54

Unstructured programs

 “Structured” program: the control flow follows the program’s
syntax.

54

Unstructured programs

 “Structured” program: the control flow follows the program’s
syntax.

 Unstructured program:

 if y=0 then goto exit ;
 x := x/y ;
 exit: S2

54

Unstructured programs

 “Structured” program: the control flow follows the program’s
syntax.

 Unstructured program:

 if y=0 then goto exit ;
 x := x/y ;
 exit: S2

 The “standard” Hoare logic rule for sequential composition

breaks out!

54

Unstructured programs

 “Structured” program: the control flow follows the program’s
syntax.

 Unstructured program:

 if y=0 then goto exit ;
 x := x/y ;
 exit: S2

 The “standard” Hoare logic rule for sequential composition

breaks out!
 Same problem with exception, and “return” in the middle.

54

Adjusting Hoare Logic for Unstructured Programs

55

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Program S :

Adjusting Hoare Logic for Unstructured Programs

55

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Program S : represented by a graph of guarded assignments; here acyclic.

Adjusting Hoare Logic for Unstructured Programs

55

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Program S : represented by a graph of guarded assignments; here acyclic.

Adjusting Hoare Logic for Unstructured Programs

55

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Program S :

1. Node represents “control location”
2. Edge is an assignment that moves

the control of S, from one location to
another.

3. An assignment can only execute if
its guard is true.

Adjusting Hoare Logic for Unstructured Programs

56

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Prove { P } S { Q }

Adjusting Hoare Logic for Unstructured Programs

56

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Prove { P } S { Q }

1. Decorate nodes with assertions.
2. Prove for each edge, the

corresponding Hoare triple.

Adjusting Hoare Logic for Unstructured Programs

56

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Prove { P } S { Q }

1. Decorate nodes with assertions.
2. Prove for each edge, the

corresponding Hoare triple.

P

Q

Adjusting Hoare Logic for Unstructured Programs

56

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Prove { P } S { Q }

1. Decorate nodes with assertions.
2. Prove for each edge, the

corresponding Hoare triple.

P

Q

A1

A2

Adjusting Hoare Logic for Unstructured Programs

56

0

1

2

3

x<
0

 y
:=0

x>0 y:=y/x

x=0 skip

Prove { P } S { Q }

1. Decorate nodes with assertions.
2. Prove for each edge, the

corresponding Hoare triple.

P

Q

A1

A2

{ P /\ x>0 } y:=y/x { A2 }

Handling exception and return-in-the-middle

 Map the program to a graph of control
structure, then simply apply the logic for
unstructured program.

 Example:

 try { if g then throw ; S }

 handle T ;

 Example:

 if g then return ;
 S ;
 return ;

57

T

S

g

¬g

S

g

¬g

Beyond pre/post conditions

 Class invariant

 When specifying the order of certain actions within a
program is important:
 E.g. CSP

 When sequences of observable states through out the
execution have to satisfy certain property:
 E.g. Temporal logic

 When the environment cannot be fully trusted:
 E.g. Logic of belief

58

