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Overview

 Hoare triples
 Basic statements   // SEQ, IF,  ASG

 Composition rules for seq and if 
 Assignment
 Weakest pre-condition

 Loops     // WHILE 
 Invariants
 Variants
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Hoare triples
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How do we prove our claims ?

 In Hoare logic we use inference rules.

 Usually of this form:

 A proof is essentially just a series of invocations of 
inference rules, that produces our claim from known 
facts and assumptions.
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premise-1   ,  premise-2   , …
-----------------------------------------------------------

conclusion
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Needed notions 

 Inference rule:
      { P }   S   { Q }    ,    Q ⇒ R
    ---------------------------------------
                  { P }  S  { R }

is this sound?

 What does a specification mean ?
 Programs
 Predicates
 States

We’ll explain this in 
term of abstract 
models.
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State

 In the sequel we will consider a program P with two 
variables: x:int , y:int.

 The state of P is determined by the value of x,y. Use record 
to denote a state:

 {  x=0  ,  y=9 } // denote state where x=0 and y=9

 This notion of state is abstract! Actual state of P may 
consists of the value of CPU registers, stacks etc.

 Σ denotes the space of all possible states of P.
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Expression

 An expression can be seen as a function  Σ → val

 x + 1  { x=0 , y = 9 }  yields  1
 x + 1  { x=9 , y = 9 }  yields  10
 etc

 A (state) predicate is an expression that returns a boolean:

 x>0  { x=0 , y = 9 }  yields  false
 x>0  { x=9 , y = 9 }  yields  true
 etc
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Viewing predicate as set

 So, a (state) predicate P is a function  Σ → bool. It induces 
a set:

 χP  =  {  s  |  s|= P }  // the set of all states satisfying P

 P and its induced set is ‘isomorphic’ :

 P(s)  =  s∈χP

 Ehm … so for convenience lets just overload “P” to also 
denote χP. Which one is meant, depends on the context.

 Eg. when we say “P is an empty predicate”.
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Implication

 P ⇒ Q    // P⇒ Q  is valid

This means:  ∀s. s|= P ⇒  s|= Q

In terms of set this is equivalent to:   χP   ⊆  χQ

 And to confuse you , the often used jargon:
 P is stronger than Q
 Q is weaker than P
 Observe that in term of sets, stronger means smaller!
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Non-termination

 What does this mean?

 {s’ | s Pr  s’}   =   ∅,  for some state s

 Can be used to model: “Pr does not terminate when 
executed on s”.

 However, in discussion about models, we usually assume 
that our programs terminate.

 Expressing non-termination leads to some additional 
complications → not really where we want to focus now.

s Pr s’ stands for (Pr,s) s’
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Hoare triples

 Now we have enough to define abstractly what a 
specification means:

{  P  }   Pr   {  Q  }    =   
                      (∀s.  s|=P  ⇒  (∀s’. s Pr s’ ⇒ s’ |= Q))

 Since our model cannot express non-termination, we 
assume that Pr terminates.

 The interpretation of Hoare triple where termination is 
assumed is called “partial correctness” interpretation.

 Otherwise it is called total correctness.

s Pr s’ stands for (Pr,s) s’
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Now we can explain …

P Q

R
S

   { P }   S   { Q }    , Q ⇒ R
-------------------------------------------
            { P }  S  { R }

Post-condition weakening Rule:

{ P }   S   { Q }

{ P }   S   { R }



13

And the dual

P’ Q
S

{  P’  }   S   {  Q  }
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And the dual

P’ Q
S

{  P’  }   S   {  Q  }

P

{  P  }   S   {  Q  }
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And the dual

P’ Q
S

P ⇒ P’  ,  { P’  }   S   {  Q  }  
-------------------------------------------
             {  P  }  S  {  Q  }

Pre-condition strengthening Rule:

{  P’  }   S   {  Q  }

P

{  P  }   S   {  Q  }
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Joining specifications

 Conjunction:

    { P1 }   S   { Q1 }      ,      { P2 }  S  { Q2 }
 -----------------------------------------------------------------
               { P1 /\ P2 }  S  { Q1 /\ Q2 }

 Disjunction:

    { P1 }   S   { Q1 }      ,      { P2 }  S  { Q2 }
 -----------------------------------------------------------------
               { P1 \/ P2 }  S  { Q1 \/ Q2 }



Reasoning about basic statements
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Rule for SEQ composition

{  P  }   S1   {  Q  }

S1
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Rule for SEQ composition

{  P  }   S1   {  Q  }
{  Q  }   S2   {  R  }

S1 S2
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Rule for SEQ composition

{  P  }   S1   {  Q  }
{  Q  }   S2   {  R  }

S1 S2

{  P  }   S1 ; S2   {  R  }
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Rule for SEQ composition

{  P  }   S1   {  Q  }
{  Q  }   S2   {  R  }

S1 S2

{  P  }   S1 ; S2   {  R  }

    {  P  }   S1   {  Q  }    ,   {  Q  }   S2   {  R  }
-----------------------------------------------------------------  
                    {  P  }   S1 ; S2   {  R  } 
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Rule for SEQ composition

{  P  }   S1   {  Q  }

S1
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Rule for SEQ composition

{  P  }   S1   {  Q  }
{  Q  }   S2   {  R  }

S1 S2

{  P  }   S1 ; S2   {  R  }

    {  P  }   S1   {  Q  }    ,   {  Q  }   S2   {  R  }
-----------------------------------------------------------------  
                    {  P  }   S1 ; S2   {  R  } 
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Rule for IF

P



1818

Rule for IF

g

¬g

P
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Rule for IF

{  P /\ g  }   S1   {  Q  }

Q
g

¬g

S1P
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Rule for IF

{  P /\ g  }   S1   {  Q  }

Q
g

¬g

S1P

S2

{  P /\ ¬g  }   S2   {  Q  }
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Rule for IF

{  P /\ g  }   S1   {  Q  }

Q
g

¬g

S1P

S2

{  P /\ ¬g  }   S2   {  Q  }

{  P  }   if g then S1 else S2   {  Q  }
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Rule for IF

{  P /\ g  }   S1   {  Q  }

Q
g

¬g

S1P

S2

{  P /\ ¬g  }   S2   {  Q  }

{  P  }   if g then S1 else S2   {  Q  }

    {  P /\ g  }   S1   {  Q  }    ,   {  P /\ ¬g  }   S2   {  Q  }
--------------------------------------------------------------------------  
                   {  P  } if  g  then  S1  else  S2  {  Q  } 
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Rule for Assignment

 Let see ….   


 Find a pre-condition W, such that, for any begin state s, and 
end state t:

 s |= W  ⇔ t |= Q

 Then we can equivalently prove  P ⇒  W

ts
x := e

??      
--------------------------------

{  P  }   x:=e  {  Q  }



2020

Assignment, examples

 {  10 = y  }  x:=10    {    x=y   }

 {  x+a = y  } x:=x+a {   x=y   }

 So,  W can be obtained by  Q[e/x]
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Assignment

 Theorem:

 Q  holds after x:=e  iff  Q[e/x] holds before the 
 assignment.

 Express this indirectly by:

 {  P  }  x:=e  {  Q  }        =         P ⇒ Q[e/x]

 Corollary:

 { Q[e/x] }   x:=e   {  Q  }  always valid. 
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How does a proof  proceed now ?
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 

 Rule for SEQ requires you to come up with intermediate 
assertions:

 {  x≠y  }    tmp:= x  {  ?  } ; x:=y {  ?  } ; y:=tmp   {  x≠y  } 

 What to fill ??

 Use the “Q[e/x]” suggested by the ASG theorem.
 Work in reverse direction.
 “Weakest pre-condition”
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Weakest Pre-condition (wp)

 “wp” is a meta function:

 wp : Stmt X Pred → Pred

 wp(S,Q) gives the weakest (largest) pre-cond such that 
executing S in any state in any state in this pre-cond results 
in states in Q.
 Partial correctness    termination assumed
 Total correctness  termination demanded 
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Weakest pre-condition

 Let W  =  wp(S,Q)

 Two properties of W

 Reachability: from any s|=W,  if s S s’ then s’ |= Q

 Maximality:  s S s’ and s’ |= Q  implies s|=W

s S s’ stands for (S,s) 
s’
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Defining wp

 In terms of our abstract model:

 wp(S,Q)   =   {  s  | forall s’. s S s’ implies s’ |= Q  }

 Abstract characterization:

 {  P  }  S  {  Q  }    =    P ⇒  wp(S,Q)

 Nice, but this is not a constructive definition (does not tell us 
how to actually construct “W”)   
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Some examples

 All these pre-conditions are the weakest:

 {   y=10  }  x:=10  {   y=x  }

 {   Q   }  skip  {   Q   }

 {   Q[e/x]   } x:=e  {  Q  }   
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Some examples

 All these pre-conditions are the weakest:

 {   y=10  }  x:=10  {   y=x  }

 {   Q   }  skip  {   Q   }

 {   Q[e/x]   } x:=e  {  Q  }   

    wp   skip   Q        =         Q

    wp   (x:=e)   Q     =    Q[e/x]
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wp  of   SEQ

    
wp ((S1 ; S2) ,Q)    =     wp(S1 , (wp(S2,Q)))

Q
W

= wp(S2,Q)

V

= wp(S1,W)
S2

S1
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wp  of   SEQ

    
wp ((S1 ; S2) ,Q)    =     wp(S1 , (wp(S2,Q)))

Q
W

= wp(S2,Q)

V

= wp(S1,W)
S2

S1
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wp  of   SEQ

    
wp ((S1 ; S2) ,Q)    =     wp(S1 , (wp(S2,Q)))

Q
W

= wp(S2,Q)

V

= wp(S1,W)
S2

S1
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wp  of    IF

    
wp( (if  g  then  S1 else S2),Q)    =     

                                          g  ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1
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wp  of    IF

    
wp( (if  g  then  S1 else S2),Q)    =     

                                          g  ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

g
¬g
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wp  of    IF

    
wp( (if  g  then  S1 else S2),Q)    =     

                                          g  ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

g
¬g

Other formulation :
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wp  of    IF

    
wp( (if  g  then  S1 else S2),Q)    =     

                                          g  ∧ wp(S1,Q) ∨¬g ∧ wp (S2,Q)

Q

W

= wp S2 Q

V

= wp S1 Q

S2

S1

g
¬g

(g  ⇒   wp (S1 ,Q))
/\
(¬g ⇒ wp (S2 ,Q))

Other formulation :

Proof: homework 
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How does a proof  proceed now ?
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 

n Calculate:

   W    =     wp( (tmp:= x ; x:=y ; y:=tmp) , x≠y  )
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 

n Calculate:

   W    =     wp( (tmp:= x ; x:=y ; y:=tmp) , x≠y  )
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 

n Calculate:

   W    =     wp( (tmp:= x ; x:=y ; y:=tmp) , x≠y  )

n Then prove:  x≠y ⇒  W
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How does a proof  proceed now ?

 {  x≠y  }    tmp:= x  ; x:=y ; y:=tmp   {  x≠y  } 

n Calculate:

   W    =     wp( (tmp:= x ; x:=y ; y:=tmp) , x≠y  )

n Then prove:  x≠y ⇒  W

 We calculate the intermediate assertions, rather than 
figuring them out by hand!
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Proof  via wp

 Wp calculation is fully syntax driven. (But no while yet!)
 No human intelligence needed.
 Can be automated.

 Works, as long as we can calculate “wp”    not always 
possible.

 Recall this abstract def:

 {  P  }   S   {  Q  }      =       P ⇒  wp(S,Q)  

It follows: if  P ⇒ W  not valid,  then so does the original 
spec.

30
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Proof  via wp

 Wp calculation is fully syntax driven. (But no while yet!)
 No human intelligence needed.
 Can be automated.

 Works, as long as we can calculate “wp”    not always 
possible.

 Recall this abstract def:

 {  P  }   S   {  Q  }      =       P ⇒  wp(S,Q)  

It follows: if  P ⇒ W  not valid,  then so does the original 
spec.

30

W
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Example

31

bool find(a,n,x) {

      int i = 0 ;
      bool found = false ;

      while (¬found /\ i<n)  {

           found :=  a[i]=x ;
           i++

      }
      return found ;  
}
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bool find(a,n,x) {

      int i = 0 ;
      bool found = false ;

      while (¬found /\ i<n)  {

           found :=  a[i]=x ;
           i++

      }
      return found ;  
}

found   =  (∃k : 0≤k<n :  a[k]=x)
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bool find(a,n,x) {
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Example

{  ¬found   /\  ...  /\  (found   =  (∃k : 0≤k<i :  a[k]=x))   }
      

     found :=  a[i]=x ;

     i:=i+1

{  found   =  (∃k : 0≤k<i :  a[k]=x)   } 
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Example
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{  ¬found   /\  ...  /\  (found   =  (∃k : 0≤k<i :  a[k]=x))   }
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     i:=i+1
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Example

{  ¬found   /\  ...  /\  (found   =  (∃k : 0≤k<i :  a[k]=x))   }
      

     found :=  a[i]=x ;

     i:=i+1

{  found   =  (∃k : 0≤k<i :  a[k]=x)   } 

found   =  (∃k : 0≤k<i+1 :  a[k]=x)

(a[i]=x)    =  (∃k : 0≤k<i+1 :  a[k]=x)

0 ≤ i

wp  (x:=e)  Q  =  Q[e/x]

⇒



Reasoning about loops
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How to prove this ?

 {  P  }   while  g  do  S   {   Q  }

 Calculate wp  first ?
 We don’t have to
 But wp has nice property  wp completely captures the 

statement:

{ P }   T  { Q }      =      P ⇒  wp  T  Q
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wp of  a loop ….

 Recall :

 wp(S,Q)   =   {  s  | forall s’. s S s’  implies s’|=Q  }
                      

 {  P  }  S  {  Q  }    =    P ⇒  wp(S,Q) 

 But none of these definitions are actually useful to construct 
the weakest pre-condition.

 In the case of a loop, a constructive definition is not obvious. 
 pending.
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How to prove this ?

 {  P  }   while  g  do  S   {   Q  }

 Plan-B:  try to come up with an inference rule:

            condition about   g
            condition about   S
  -------------------------------------------
    {  P  }   while  g  do  S   {   Q  }

 The rule only need to be “sufficient”.
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Idea

 {  P  }   while  g  do  S   {   Q  }
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Idea

 {  P  }   while  g  do  S   {   Q  }

 Try to come up with a predicate I that holds after each 
iteration :

 iter1 :  // g //  ;  S {  I  }
 iter2 :  // g //  ;  S {  I  }
 …
 itern :  // g //  ;  S {  I  }  // last iteration!
 exit :  // ¬g //
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So, to get postcond Q, 
sufficient to prove:

     I /\ ¬g  ⇒  Q
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 {  P  }   while  g  do  S   {   Q  }

 Try to come up with a predicate I that holds after each 
iteration :

 iter1 :  // g //  ;  S {  I  }
 iter2 :  // g //  ;  S {  I  }
 …
 itern :  // g //  ;  S {  I  }  // last iteration!
 exit :  // ¬g //

 I  /\  ¬g  holds as the loop exit! 

37

So, to get postcond Q, 
sufficient to prove:

     I /\ ¬g  ⇒  Q

Still need to capture this.



Idea

 while  g  do  S   

 I is to holds after each iteration
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// g //   S   {  I  }   

iter i+1
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 I is to holds after each iteration
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…   S   {  I  }   // g //   S   {  I  }   

iter i+1iter i



Idea

 while  g  do  S   

 I is to holds after each iteration

 

38
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 I is to holds after each iteration
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…   S   {  I  }   // g //   S   {  I  }   

iter i+1iter i

Sufficient to prove:  {  I /\ g  }   S   {  I  }

Except for the first iteration !
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 {  P  }    while  g  do  S   

 For the first iteration :
 

// g //   S   {  I  }   

Iter1
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Idea

 {  P  }    while  g  do  S   

 For the first iteration :
 

  {  I  }   // g //   S   {  I  }   

Iter1

Recall the condition:  {  I /\ g  }   S   {  I  }



Idea

 {  P  }    while  g  do  S   

 For the first iteration :
 

  {  I  }   // g //   S   {  I  }   

Iter1We know this from 
the given pre-cond

Recall the condition:  {  I /\ g  }   S   {  I  }

  {  P  }   
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 For the first iteration :
 

  {  I  }   // g //   S   {  I  }   

Iter1We know this from 
the given pre-cond

Recall the condition:  {  I /\ g  }   S   {  I  }
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Idea

 {  P  }    while  g  do  S   

 For the first iteration :
 

  {  I  }   // g //   S   {  I  }   

Iter1We know this from 
the given pre-cond

Recall the condition:  {  I /\ g  }   S   {  I  }

  {  P  }   

Additionally we need :  P ⇒  I



To Summarize

 Capture this in an inference rule:

 P ⇒ I    // setting up I 
 {  g  /\  I  }    S    {   I   }  // invariance
 I  /\ ¬g  ⇒  Q    // exit cond
 ----------------------------------------
 {  P  }   while  g  do   S    {  Q  }

 This rule is only good for partial correctness though.
 I satisfying the second premise above is called invariant.
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Examples

 Prove:

{   i=0  }     while  i<n  do  i++    {  i=n  }

 Prove:

{  i=0 /\  s=0  }   

 while  i<n  do  {  s = s +a[i]  ; i++ }

{   s  =  SUM(a[0..n))   }
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Note

 Recall :

wp ((while g do S),Q)   =
            {  s  | forall s’.  s (while g do S) s’ implies s’ |=  
Q  } 

 Theoretically, we can still construct this set if the state space 
is finite. The construction is exactly as the def. above says.

 You need a way to tell when the loop does not terminate:
 Maintain a history H of states after each iteration.
 Non-termination if  the state t after i-th iteration is in H 

from the previous iteration.
 Though then you can just as well ‘execute’ the program to 

verify it (testing), for which you don’t need Hoare logic.
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To prove
 {P} while B do S end {Q}
find invariant J and well-founded variant function vf such 
that:

 invariant holds initially:  P ⇒ J

 invariant is maintained:  {J ∧ B} S {J}
 invariant is sufficient:  J ∧¬B  ⇒ Q

 variant function is bounded:
  J ∧ B ⇒ 0 ≦ vf

 variant function decreases:
  {J ∧ B ∧ vf=VF} S {vf<VF}

Tackling while termination: invariant and variant



Proving termination

 {  P  }   while  g  do  S   {   Q  }

 Idea:  come up with an integer expression m, satisfying :

q At the start of every iteration m ≥ 0

q Each iteration decreases m

 These imply that the loop will terminates.
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Capturing the termination conditions

 At the start of every iteration m ≥ 0 :

 g  ⇒  m ≥ 0

 If you have an invariant:   I /\  g  ⇒  m ≥ 0

 Each iteration decreases m :

 {  I /\ g  }    C:=m; S   {  m<C  }
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To Summarize
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To Summarize

  P ⇒ I          // setting up I 

 {  g  /\  I  }    S    {   I   }   // invariance
 I  /\ ¬g  ⇒  Q     // exit cond

 {  I /\ g  }    C:=m; S   {  m<C  }  // m decreasing 
 I /\ g ⇒  m ≥ 0      //  m bounded below 
 ----------------------------------------
 {  P  }   while  g  do   S    {  Q  }

46



To Summarize

  P ⇒ I          // setting up I 

 {  g  /\  I  }    S    {   I   }   // invariance
 I  /\ ¬g  ⇒  Q     // exit cond

 {  I /\ g  }    C:=m; S   {  m<C  }  // m decreasing 
 I /\ g ⇒  m ≥ 0      //  m bounded below 
 ----------------------------------------
 {  P  }   while  g  do   S    {  Q  }

 Since we also have this pre-cond strengthening rule:

     P ⇒ I   ,  {  I  }  while g do S  { Q }
 ------------------------------------------------------
          {  P  }   while  g  do  S  {  Q  }
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A Bit History and Other Things
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History

 Hoare logic, due to CAR Hoare 1969. 
 Robert Floyd, 1967    for Flow Chart.  “Unstructured” program.
 Weakest preconditon  Edsger Dijkstra, 1975.

 Early 90s: the rise of theorem provers. Hoare logic is mechanized. e.g. 
“A Mechanized Hoare Logic of State Transitions” by Gordon.

 Renewed interests in Hoare Logic for automated verification:  Leino et 
al, 1999, “Checking Java programs via guarded commands”
Tool: ESC/Java.

 Byte code verification. Unstructured  going back to Floyd. Ehm... what 
did Dijkstra said again about GOTO??
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History

 Hoare: “An axiomatic basis for computer 
programming”, 1969.

 Charles Antony Richard Hoare, born 1934 in Sri Lanka 
 1980 : winner of Turing Award
 Other achievement:

 CSP (Communicating Sequential Processes)
 Implementor ALGOL 60
 Quicksort
 2000 :  sir  Charles 



51

History

 Edsger Wybe Dijkstra, 1930 in Rotterdam.
 Prof. in TU Eindhoven, later in Texas, Austin.
 1972 : winner Turing Award
 Achievement

 Shortest path algorithm
 Self-stabilization
 Semaphore
 Structured Programming, with Hoare.
 “A Case against the GO TO Statement”
 Program derivation

 Died in 2002, Nuenen.



History of   Programming 
Languages Giuseppe De 

Giacomo
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ALGOL-60
 ALGOL-60: “ALGOrithmic Language”

(1958-1968) by very many people IFIP(International Federation 
for Information Processing) , including John Backus, Peter Naur, 
Alan Perlis, Friedrich L. Bauer, John McCarthy, Niklaus Wirth, 
C. A. R. Hoare, Edsger W. Dijkstra  

 Join effort by  Academia and Industry
 Join effort by Europe and USA
 ALGOL-60 the most influential imperative language ever
 First language with syntax formally defined (BNF)
 First language with structured control structures

 If then else
 While (several forms)
 But still goto 

 First language with … (see next) 
 Did not include I/O considered too hardware dependent 
 ALGOL-60 revised several times in early 60’s, as understanding 

of programming languages improved
 ALGOL-68 a major revision

  by 1968 concerns on data abstraction become prominent, and 
ALGOL-68 addressed them

 Considered too Big and Complex by many of the people that worked 
on the original ALGOL-60 (C. A. R. Hoare’ Turing Lecture, cf. ADA 
later)

Edsger W. Dijkstra 
(cf. shortest path, 

semaphore)

C. A. R. Hoare 
(cf. axiomatic semantics, 

quicksort, CSP)



History of   Programming 
Languages Giuseppe De 

Giacomo
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ALGOL-60
 First language with syntax formally defined (BNF)

(after such a success with syntax, there was a great hope to being able to 
formally define semantics in an similarly easy and accessible way: this 
goal failed so far)

 First language with structured control structures
 If then else
 While (several forms)
 But still goto 

 First language with procedure activations based on the STACK 
(cf. recursion)

 First language with well defended parameters passing 
mechanisms
 Call by value
 Call by name (sort of call by reference)
 Call by value result (later versions)
 Call by reference (later versions)

 First language with explicit typing of variables
 First language with blocks (static scope)
 Data structure primitives: integers, reals, booleans, arrays of any 

dimension; (no records at first), 
 Later version had also references and records (originally 

introduced in COBOL), and user defined types

Edsger W. Dijkstra 
(cf. shortest path, 

semaphore)

C. A. R. Hoare 
(cf. axiomatic semantics, 

quicksort, CSP)



Unstructured programs
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Unstructured programs

 “Structured” program: the control flow follows the program’s 
syntax.
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Unstructured programs

 “Structured” program: the control flow follows the program’s 
syntax.

 Unstructured program:

  if  y=0  then   goto exit ;
        x := x/y ; 
 exit: S2
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Unstructured programs

 “Structured” program: the control flow follows the program’s 
syntax.

 Unstructured program:

  if  y=0  then   goto exit ;
        x := x/y ; 
 exit: S2

      
 The “standard” Hoare logic rule for sequential composition 

breaks out!
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Unstructured programs

 “Structured” program: the control flow follows the program’s 
syntax.

 Unstructured program:

  if  y=0  then   goto exit ;
        x := x/y ; 
 exit: S2

      
 The “standard” Hoare logic rule for sequential composition 

breaks out!
 Same problem with exception, and “return” in the middle.
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Adjusting Hoare Logic for Unstructured Programs
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Program  S :
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Program  S : represented by a graph of guarded assignments;  here acyclic.
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0
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3

x<
0  


   y
:=0

x>0     y:=y/x

x=0     skip

Program  S :

1. Node represents “control location”
2. Edge is an assignment that moves 

the control of S, from one location to 
another.

3. An assignment can only execute if 
its guard is true.
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1. Decorate nodes with assertions.
2. Prove for each edge, the 

corresponding Hoare triple.
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0

1
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3

x<
0  


   y
:=0

x>0     y:=y/x

x=0     skip

Prove    {  P  }  S  {  Q  }

1. Decorate nodes with assertions.
2. Prove for each edge, the 

corresponding Hoare triple.

P

Q

A1

A2

{  P /\ x>0  }   y:=y/x   {  A2  }



Handling exception and return-in-the-middle

 Map the program to a graph of control 
structure, then simply apply the logic for 
unstructured program.

 Example:

 try  {  if  g  then  throw ;  S   }

 handle  T   ; 

 Example:

 if    g   then  return ;
 S  ;
 return ;
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Beyond pre/post conditions

 Class invariant

 When specifying the order of certain actions within a 
program is important:
 E.g.  CSP

 When sequences of observable states through out the 
execution have to satisfy certain property:
 E.g.  Temporal logic

 When the environment cannot be fully trusted:
 E.g.  Logic of belief
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