
Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge in the Situation Calculus

Adrian Pearce

8 July 2009

includes slides by Ryan Kelly

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Outline

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Outline

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Extensions to the Situation Calculus for representing and reasoning
about knowledge

Reasoning about knowledge with hidden actions

Reasoning about group-level knowledge modalities

Explanation closure assumes complete knowledge of Dssa

Golog assumes complete knowledge of Dad and Duna in S0

What if incomplete knowledge: Knows(φ, s)?

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Basic Action Theory (Revisited)

Definition (Basic Action Theory)

A basic action theory, denoted D, consists of:

the foundational axioms of the situation calculus (Σ);

action description axioms such as preconditions (Dad);

successor state axioms describing how primitive fluents change
between situations (Dssa);

axioms describing the initial situation (DS0);

and axioms describing background facts (Dbg)

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg

Regression operator performs induction over Σ, Dssa and Dbg

resulting in query Dbg ∪ DS0

Complete knowledge of Dad , Dbg and Dssa assumed.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Basic Action Theory (Revisited)

Definition (Basic Action Theory)

A basic action theory, denoted D, consists of:

the foundational axioms of the situation calculus (Σ);

action description axioms such as preconditions (Dad);

successor state axioms describing how primitive fluents change
between situations (Dssa);

axioms describing the initial situation (DS0);

and axioms describing background facts (Dbg)

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg

Regression operator performs induction over Σ, Dssa and Dbg

resulting in query Dbg ∪ DS0

Complete knowledge of Dad , Dbg and Dssa assumed.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Basic Action Theory (Revisited)

Definition (Basic Action Theory)

A basic action theory, denoted D, consists of:

the foundational axioms of the situation calculus (Σ);

action description axioms such as preconditions (Dad);

successor state axioms describing how primitive fluents change
between situations (Dssa);

axioms describing the initial situation (DS0);

and axioms describing background facts (Dbg)

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg

Regression operator performs induction over Σ, Dssa and Dbg

resulting in query Dbg ∪ DS0

Complete knowledge of Dad , Dbg and Dssa assumed.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Outline

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Limitation: Synchronicity

This works well, but it depends on two assumptions:

Complete knowledge (linear plan, no sensing)

Synchronous domain (agents proceed in lock-step)

Nearly universal in the literature: ”assume all actions are public”.

Challenge: Regression depends intimately on synchronicity

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Two aspects to knowledge

Two aspects to knowledge

incomplete information (through action can learn)

lack of synchronisation (don’t know how many actions have
occurred)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Example: Alternating Bit Protocol

Protocol for S :

i:=0
while true do
begin read xi ;

send xi

send xi until KSKR(xi);
send “KSKR(xi)” until KSKRKSKR(xi)

i := i+1
end

Protocol for R:

when KR(x0) set i:=0
while true do
begin write xi ;

send “KR(xi)” until KRKSKR(xi);
send “KRKSKR(xi)” until KR(xx+1)

i:= i+1
end

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Example: Alternating Bit Protocol

Protocol for S :

i:=0
while true do
begin read xi ;

send xi

send xi until KSKR(xi);

send “KSKR(xi)” until KSKRKSKR(xi)

i := i+1
end

Protocol for R:

when KR(x0) set i:=0
while true do
begin write xi ;

send “KR(xi)”

until KRKSKR(xi);
send “KRKSKR(xi)” until KR(xx+1)

i:= i+1
end

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Example: Alternating Bit Protocol

Protocol for S :

i:=0
while true do
begin read xi ;

send xi

send xi until KSKR(xi);
send “KSKR(xi)” until KSKRKSKR(xi)
i := i+1
end

Protocol for R:

when KR(x0) set i:=0
while true do
begin write xi ;

send “KR(xi)” until KRKSKR(xi);
send “KRKSKR(xi)” until KR(xx+1)
i:= i+1
end

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Equivalence relations

Definition (Kripke Models)

A Kripke model M is a tuple 〈S ,V ,R1, . . . ,Rm〉 where:

1 S is a non-empty set of states, possible worlds or epistemic
alternatives,

2 V : S → (p → {true, false}) is a truth assignment to the
propositional atoms (p) per state,

3 Ri ⊆ S × S (for all i ∈ A) are the epistemic accessibility
relations for each agent.

For any state or possible world s,
(M, s) |= p (for p ∈ P) iff V (s)(p) = true

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Equivalence relations

Definition (Kripke Models)

A Kripke model M is a tuple 〈S ,V ,R1, . . . ,Rm〉 where:

1 S is a non-empty set of states, possible worlds or epistemic
alternatives,

2 V : S → (p → {true, false}) is a truth assignment to the
propositional atoms (p) per state,

3 Ri ⊆ S × S (for all i ∈ A) are the epistemic accessibility
relations for each agent.

For any state or possible world s,
(M, s) |= p (for p ∈ P) iff V (s)(p) = true

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Equivalence relations

Definition (Kripke Models)

A Kripke model M is a tuple 〈S ,V ,R1, . . . ,Rm〉 where:

1 S is a non-empty set of states, possible worlds or epistemic
alternatives,

2 V : S → (p → {true, false}) is a truth assignment to the
propositional atoms (p) per state,

3 Ri ⊆ S × S (for all i ∈ A) are the epistemic accessibility
relations for each agent.

For any state or possible world s,
(M, s) |= p (for p ∈ P) iff V (s)(p) = true

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Equivalence relations

Definition (Kripke Models)

A Kripke model M is a tuple 〈S ,V ,R1, . . . ,Rm〉 where:

1 S is a non-empty set of states, possible worlds or epistemic
alternatives,

2 V : S → (p → {true, false}) is a truth assignment to the
propositional atoms (p) per state,

3 Ri ⊆ S × S (for all i ∈ A) are the epistemic accessibility
relations for each agent.

For any state or possible world s,
(M, s) |= p (for p ∈ P) iff V (s)(p) = true

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Equivalence relations

Definition (Kripke Models)

A Kripke model M is a tuple 〈S ,V ,R1, . . . ,Rm〉 where:

1 S is a non-empty set of states, possible worlds or epistemic
alternatives,

2 V : S → (p → {true, false}) is a truth assignment to the
propositional atoms (p) per state,

3 Ri ⊆ S × S (for all i ∈ A) are the epistemic accessibility
relations for each agent.

For any state or possible world s,
(M, s) |= p (for p ∈ P) iff V (s)(p) = true

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Example: Muddy Children Puzzle

Example

k children get mud on their foreheads

Each can see the mud on others, but not on his/her own
forehead

The father says at least one of you had mud on your head”
initially.

The father then repeats Can any of you prove you have mud
on your head? over and over.

Assuming that the children are perceptive, intelligent, truthful,
and that they answer simultaneously, what will happen?

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Muddy Children Puzzle (Initially)

(1,1,1)
•

2

���������������

3
1

???????????????

(1,1,0)
•

2

���������������

2

???????????????

(1,0,1)
•

3
1

???????????????
(0,1,1)
•

3

2

���������������

(1,0,0)
•

1

???????????????
(0,1,0)
•

2

���������������
(0,0,1)
•

3

(0,0,0)
•

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Muddy Children Puzzle (After the father speaks)

(1,1,1)
•

2

���������������

3
1

???????????????

(1,1,0)
•

2

���������������

2

???????????????

(1,0,1)
•

3
1

???????????????
(0,1,1)
•

3

2

���������������

(1,0,0)
•

(0,1,0)
•

(0,0,1)
•

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Forms of knowledge

DG p: the group G has distributed knowledge of fact p

SG p: someone in G knows p

SG p ≡ ∨i∈G Kip

EG p: everyone in G knows p

EG p ≡ ∧i∈G Kip

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Forms of knowledge

E k
G p for k ≥ 1: E k

G p is defined by

E 1
G p = EG p

E k+1
G p = EG E k

G p for k ≥ 1

CG p: p is common knowledge in G

CG ≡ EG p ∧ E 2
G p ∧ . . .Em

G p ∧ . . .

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Synchronisation (Revisited)

Example (The Coordinated Attack Problem (Byzantine Generals))

Suppose General A sends a message to General B saying Let’s
attack at Dawn.

Does not have any common knowledge fixpoint (in spite of
acknowledgements).

It seems that common knowledge is theoretically unachievable
- how can this be so?

In the presence of unreliable communication, common
knowledge is theoretically unachievable.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Simultaneity

In practice, we can establish ε-common knowledge, Halpern and
Moses (1990).

Definition (ε-common knowledge)

ε-common knowledge assumes that within an interval ε everybody
knows φ.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Agent i knows p in world s of (Kripke) structure M, exactly if p is
true at all worlds that i considers possible in s. Formally,

(M, s) |= Kip iff (M, t) |= p for all t such that (s, t) ∈ Ki

Relationship between knowledge forms, DG , EG and CG :

|= EG p ⇔ ∧i∈G Kip

The notions of group knowledge form a hierarchy

CGϕ ⊃ . . . ⊃ E k+1
G ϕ ⊃ . . . ⊃ EGϕ ⊃ SGϕ ⊃ DGϕ ⊃ ϕ

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Agent i knows p in world s of (Kripke) structure M, exactly if p is
true at all worlds that i considers possible in s. Formally,

(M, s) |= Kip iff (M, t) |= p for all t such that (s, t) ∈ Ki

Relationship between knowledge forms, DG , EG and CG :

|= EG p ⇔ ∧i∈G Kip

The notions of group knowledge form a hierarchy

CGϕ ⊃ . . . ⊃ E k+1
G ϕ ⊃ . . . ⊃ EGϕ ⊃ SGϕ ⊃ DGϕ ⊃ ϕ

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Agent i knows p in world s of (Kripke) structure M, exactly if p is
true at all worlds that i considers possible in s. Formally,

(M, s) |= Kip iff (M, t) |= p for all t such that (s, t) ∈ Ki

Relationship between knowledge forms, DG , EG and CG :

|= EG p ⇔ ∧i∈G Kip

The notions of group knowledge form a hierarchy

CGϕ ⊃ . . . ⊃ E k+1
G ϕ ⊃ . . . ⊃ EGϕ ⊃ SGϕ ⊃ DGϕ ⊃ ϕ

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Agent i knows p in world s of (Kripke) structure M, exactly if p is
true at all worlds that i considers possible in s. Formally,

(M, s) |= Kip iff (M, t) |= p for all t such that (s, t) ∈ Ki

Relationship between knowledge forms, DG , EG and CG :

|= EG p ⇔ ∧i∈G Kip

The notions of group knowledge form a hierarchy

CGϕ ⊃ . . . ⊃ E k+1
G ϕ ⊃ . . . ⊃ EGϕ ⊃ SGϕ ⊃ DGϕ ⊃ ϕ

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Agent i knows p in world s of (Kripke) structure M, exactly if p is
true at all worlds that i considers possible in s. Formally,

(M, s) |= Kip iff (M, t) |= p for all t such that (s, t) ∈ Ki

Relationship between knowledge forms, DG , EG and CG :

|= EG p ⇔ ∧i∈G Kip

The notions of group knowledge form a hierarchy

CGϕ ⊃ . . . ⊃ E k+1
G ϕ ⊃ . . . ⊃ EGϕ ⊃ SGϕ ⊃ DGϕ ⊃ ϕ

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

The properties of Knowledge (S5 axioms)

1 Kiϕ ∧ Ki (ϕ⇒ Ψ))⇒ Ki Ψ (Distribution axiom)

2 if M |= ϕ then M |= Ki (Knowledge generalisation rule)

3 Kiϕ⇒ ϕ (Knowledge or truth axiom)

4 Kiϕ⇒ KiKiϕ (Positive introspection axiom)

5 ¬Kiϕ⇒ Ki¬Kiϕ (Negative introspection axiom)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

View-based knowledge interpretations

View-based knowledge interpretations, Halpern and Moses
(1990): similar to Kripke structures in that have the
properties of S5, additionally

C1. The fixed point axiom |= CG p ⇔ EG (p ∧ CG p)

C2. the induction rule p ⊃ EG (p ∧ q) infer p ⊃ CG q

When views (of each agent) are indistinguishable (via
equivalence relations) then common knowledge has been
established: common knowledge can be induced, or CG .

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

View-based knowledge interpretations

A view-based knowledge interpretation I is a triple (R, π, v),
consisting of a set of runs R, an assignment π that associates with
every point in R a truth assignment to the ground facts.
For every point (r , t) ∈ R and every ground fact p ∈ P, we have

π(r , t)(P) ∈ {true, false}

and a view function v for R.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Outline

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

First, we must represent asynchronicity.
We reify the observations made by each agent, by adding the
following action description function of the following form to Dad :

Obs(agt, c , s) = o

If Obs(agt, c , s) = {} then the actions are completely hidden.

View(agt,S0) = ε
Obs(agt, c , s) = {} → View(agt, do(c , s)) = View(agt, s)

Obs(agt, c , s) 6= {} → View(agt, do(c , s)) = Obs(agt, c , s) ·View(agt, s)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

In synchronous domains, everyone observes every action:

a ∈ Obs(agt, c , s) ≡ a ∈ c

Sensing results can be easily included as action#sensing pairs:

a#r ∈ Obs(agt, c , s) ≡ a ∈ c ∧ SR(a, s) = r

And observability can be axiomatised explicitly

a ∈ Obs(agt, c , s) ≡ a ∈ c ∧ CanObs(agt, a, s)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

CanObs(agt, a, s) ≡ InSameRoom(agt, actor(a), s)

a ∈ Obs(agt, c , s) ≡ a ∈ c ∧ CanObs(agt, a, s)
∧¬CanSense(agt, a, s)

a#r ∈ Obs(agt, c , s) ≡ a ∈ c ∧ SR(a, s) = r
∧ CanObs(agt, a, s) ∧ CanSense(agt, a, s)

CanSense(agt, activateSpeaker(agt2), s) ≡ CloseToSpeaker(agt)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Action: global event changing the state of the world
Observation: local event changing an agent’s knowledge

Situation: global history of actions giving current world state
View: local history of observations giving current knowledge

How can we let agents reason using only their local view?

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Outline

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

If an agent is unsure about the state of the world, there must be
several different states of the world that it considers possible.
The agent knows φ iff φ is true in all possible worlds.

Knows(Q) ∧ ¬Knows(P) ∧ ¬Knows(R) ∧ Knows(P ∨ R)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge

Introduce a possible-worlds fluent K (agt, s ′, s):

We can then define knowledge as a simple macro:

Knows(agt, φ, s)
def
= ∀s ′

[
K (agt, s ′, s)→ φ(s ′)

]

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge follows Observation

Halpern & Moses, 1990:
”an agent’s knowledge at a given time must depend only on its
local history: the information that it started out with combined
with the events it has observed since then”

Clearly, we require:

K (agt, s ′, s) ≡ View(agt, s ′) = View(agt, s)

We must enforce this in the successor state axiom for K .

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge: The Synchronous Case

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge: The Synchronous Case

In the synchronous case, K0 has a simple successor state axiom:

K0(agt, s ′′, do(c , s)) ≡ ∃s ′, c ′ : s ′′ = do(c ′, s ′) ∧ K0(agt, s ′, s)

∧ Poss(c ′, s ′) ∧ Obs(agt, c , s) = Obs(agt, c ′, s ′)

And a correspondingly simple regression rule:

R(Knows0(agt, φ, do(c , s))
def
= ∃o : Obs(agt, c , s) = o

∧ ∀c ′ : Knows0(agt,Poss(c ′) ∧ Obs(agt, c ′) = o → R(φ, c ′), s)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge: The Asynchronous Case

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Knowledge: The Asynchronous Case

First, some notation:

s <α do(c , s ′) ≡ s ≤α s ′ ∧ α(c , s ′)

PbU(agt, c , s)
def
= Poss(c, s) ∧ Obs(agt, c, s) = {}

Then the intended dynamics of knowledge update are:

K (agt, s ′′, do(c , s)) ≡ ∃o : Obs(agt, c , s) = o

∧
[
o = {} → K (agt, s ′′, s)

]
∧
[
o 6= {} → ∃c ′, s ′ : K (agt, s ′, s)

∧Obs(agt, c ′, s ′) = o ∧ Poss(c ′, s ′) ∧ do(c ′, s ′) ≤PbU(agt) s ′′
]

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Sync vs Async

We’ve gone from this:

K0(agt, s ′′, do(c , s)) ≡ ∃s ′, c ′ : s ′′ = do(c ′, s ′) ∧ K0(agt, s ′, s)

∧ Poss(c ′, s ′) ∧ Obs(agt, c , s) = Obs(agt, c ′, s ′)

To this:

K (agt, s ′′, do(c , s)) ≡ ∃o : Obs(agt, c , s) = o

∧
[
o = {} → K (agt, s ′′, s)

]
∧
[
o 6= {} → ∃c ′, s ′ : K (agt, s ′, s)

∧Obs(agt, c ′, s ′) = o ∧ Poss(c ′, s ′) ∧ do(c ′, s ′) ≤PbU(agt) s ′′
]

It’s messier, but it’s also hiding a much bigger problem...

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Regressing Knowledge

Our new SSA uses ≤PbU(agt) to quantify over all future situations.
Regression cannot be applied to such an expression.

An asynchronous account of knowledge cannot be approached
using the standard regression operator.

In fact, this quantification requires a second-order induction axiom.
Must we abandon hope of an effective reasoning procedure?

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Property Persistence (revisited)

Property persistence facilitates ”factoring out” the quantification,
this allows us to get on with the business of doing regression.

The persistence condition P[φ, α] of a formula φ and action
conditions α to mean: assuming all future actions satisfy α, φ will
remain true.

P[φ, α](s) ≡ ∀s ′ : s ≤α s ′ → φ(s ′)

Like R, the idea is to transform a query into a form that is easier
to deal with.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Property Persistence

The persistence condition can be calculated as a fixpoint:

P1[φ, α](s)
def
= φ(s) ∧ ∀c : α(c)→ R[φ(do(c, s))]

Pn[φ, α](s)
def
= P1[Pn−1[φ, α], α]

(
Pn[φ, α]→ Pn+1[φ, α]

)
⇒ (Pn[φ, α] ≡ P[φ, α])

This calculation can be done using static domain reasoning and
provably terminates in several important cases.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Regressing Knowledge

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Regressing Knowledge

It becomes possible to define the regression of our Knows macro:

R[Knows(agt, φ, do(c , s))] =

[Obs(agt, c , s) = {} → Knows(agt, φ, s)]

∧ [∃o : Obs(agt, c , s) = o ∧ o 6= {} →
Knows(agt, ∀c ′ : Obs(agt, c ′) = o →

R[P[φ,PbU(agt)](do(c ′, s ′))], s)
]

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

View-Based Reasoning

The regression operator can be modified to act over observation
histories, instead of over situations:

R[Knows(agt, φ, o · h)] =

Knows(agt, ∀c ′ : Obs(agt, c ′, s ′) = o →
R[P[φ,PbU(agt)](do(c ′, s ′))], h)

We can equip agents with a situation calculus model of their own
environment.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

An Example

Ann and Bob have just received a party invitation.

We can prove the following:

D |= Knows(B,¬∃x : Knows(A, partyAt(x)),S0)

D |= ¬Knows(B,¬∃x : Knows(A, partyAt(x)), do(leave(B), S0))

D |= Knows(A, partyAt(C), do(read(A),S0))

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Summary (re-cap)

A robust account of knowledge based on observations, allowing
for arbitrarily-long sequences of hidden actions.

That subsumes existing accounts of knowledge

With regression rules utilising the persistence condition

Allowing agents to reason about their own knowledge using
only their local information

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Outline

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Group-Level Knowledge

The basic group-level operator is ”Everyone Knows”:

EKnows(G , φ, s)
def
=
∧

agt∈G

Knows(agt, φ, s)

EKnows2(G , φ, s)
def
= EKnows(G ,EKnows(G , φ), s)

. . .

EKnowsn(G , φ, s)
def
= EKnows(G ,EKnowsn−1(G , φ), s)

Eventually, we get ”Common Knowledge”:

CKnows(G , φ, s)
def
= EKnows∞(agt, φ, s)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Regressing Group Knowledge

Since EKnows is finite, it can be expanded to perform regression.

CKnows is infinitary, so this won’t work for common knowledge.
We need to regress it directly. Maybe like this?

R[CKnows(G , φ, do(c , s))]
def
=

∃o : CObs(G , c , s) = o ∧
∀c ′ : CKnows(G ,Poss(c ′)∧CObs(agt, c ′) = o → R[φ[do(c ′, s)]], s)

It is impossible to express R[CKnows] in terms of CKnows

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Regressing Group Knowledge

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Epistemic Path Language

R[CKnows] requires a more expressive epistemic language.

Dynamic Logics are formalisms for building programs from actions:

A ; ?Poss(B) ; B

A ; (B ∪ C)

A∗ ; ?Done

x :=? ; ?Avail(x) ; pickup(X)

But they don’t have to be interpreted over actions.
More generally, DLs are logics of paths.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Epistemic Path Language

Idea from van Bentham, van Eijck and Kooi.
”Logics of Communication and Change”, Info. & Comp., 2006

We can interpret Dynamic Logic epistemically:

KDo(agt, s, s ′)
def
= K (agt, s ′, s)

KDo(?φ, s, s ′)
def
= s ′ = s ∧ φ[s]

KDo(π1;π2, s, s
′)

def
= ∃s ′′ : KDo(π1, s, s

′′) ∧KDo(π2, s
′′, s ′)

KDo(π1 ∪ π2, s, s
′)

def
= KDo(π1, s, s

′′) ∨KDo(π2, s, s
′)

KDo(π∗, s, s ′)
def
= refl.tran.closure

[
KDo(π, s, s ′′)

]

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Epistemic Path Language

New macro for path-based knowledge:

PKnows(π, φ, s)
def
= ∀s ′ : KDo(π, s, s ′)→ φ[s ′]

Used like so:

Knows(agt, φ, s) ≡ PKnows(agt, φ, s)

Knows(agt1,Knows(agt2, φ), s) ≡ PKnows(agt1; agt2, φ, s)

EKnows(G , φ, s) ≡ PKnows(
⋃

agt∈G

agt, φ, s)

CKnows(G , φ, s) ≡ PKnows((
⋃

agt∈G

agt)∗, φ, s)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Regressing Epistemic Paths

It’s now possible to formulate a regression rule for PKnows in
synchronous domains:

R[PKnows0(π, φ, do(c , s))]⇒
∀c ′ : PKnows0(T [π, c , c ′],R[φ(c ′)], s)

T basically encodes the semantics of KDo

T [agt]
def
= s.s.a. for K fluent

T [?φ]
def
= ?R[φ]

T [π1 ∪ π2]
def
= T [π1] ∪ T [π2]

T [π∗]
def
= T [π]∗

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Asynchronicity

We can ”fake” asynchronicity using PKnows0 and a stack of
empty actions:

E [do(c , s)]
def
= do({}, do(c , E [s]))

En[s]
def
= E [En−1[s]]

Using a fixpoint construction that mirrors P, define:

PKnows(π, φ, s)
def
= PKnows0(π, φ, E∞[s])

We prove that PKnows(agt, φ, s) ≡ Knows(agt, φ, s)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

An Example

Ann and Bob have just received a party invitation.

We can prove the following:

D |= ¬PKnows((A ∪ B)∗, partyAt(C), S0)

D |= PKnows((A∪B)∗,∃x : Knows(B, partyAt(x)), do(read(B),S0))

D |= PKnows((A∪B)∗, partyAt(C)), do(read(A), do(read(B),S0)))

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Summary (re-cap)

Complex Epistemic Modalities: an encoding of group-level
knowledge using the syntax of dynamic logic

Built entirely use macro-expansion

In which common knowledge is amenable to regression

Incorporating arbitrarily-long sequences of hidden actions

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

In a bisimulation between two Kripke models M = 〈S ,V ,R〉 and
M ′ = 〈S ,V ′,R ′〉, form a relation <B ⊆ S × S ′ that satisfies the
following properties,

1 <B satisfies forward choice if

∀s, t ∈ S
∀s ′ ∈ S ′(<Bss ′&(s, t) ∈ R)⇒ ∃t ′ ∈ S ′(<Btt ′&(s ′, t ′) ∈ R ′)

2 <B satisfies backwards choice if

∀s ∈ S
∀s ′, t ′ ∈ S ′(<Bss ′&(s ′, t ′) ∈ R ′)⇒ ∃t ∈ S(<Btt ′&(s, t) ∈ R)

3 Satisfies forward and backward choice, and
∀s ∈ S∀s ′ ∈ S ′(<Bss ′ ⇒ V (s) = V ′(s ′))

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

In a bisimulation between two Kripke models M = 〈S ,V ,R〉 and
M ′ = 〈S ,V ′,R ′〉, form a relation <B ⊆ S × S ′ that satisfies the
following properties,

1 <B satisfies forward choice if

∀s, t ∈ S
∀s ′ ∈ S ′(<Bss ′&(s, t) ∈ R)⇒ ∃t ′ ∈ S ′(<Btt ′&(s ′, t ′) ∈ R ′)

2 <B satisfies backwards choice if

∀s ∈ S
∀s ′, t ′ ∈ S ′(<Bss ′&(s ′, t ′) ∈ R ′)⇒ ∃t ∈ S(<Btt ′&(s, t) ∈ R)

3 Satisfies forward and backward choice, and
∀s ∈ S∀s ′ ∈ S ′(<Bss ′ ⇒ V (s) = V ′(s ′))

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

In a bisimulation between two Kripke models M = 〈S ,V ,R〉 and
M ′ = 〈S ,V ′,R ′〉, form a relation <B ⊆ S × S ′ that satisfies the
following properties,

1 <B satisfies forward choice if

∀s, t ∈ S
∀s ′ ∈ S ′(<Bss ′&(s, t) ∈ R)⇒ ∃t ′ ∈ S ′(<Btt ′&(s ′, t ′) ∈ R ′)

2 <B satisfies backwards choice if

∀s ∈ S
∀s ′, t ′ ∈ S ′(<Bss ′&(s ′, t ′) ∈ R ′)⇒ ∃t ∈ S(<Btt ′&(s, t) ∈ R)

3 Satisfies forward and backward choice, and
∀s ∈ S∀s ′ ∈ S ′(<Bss ′ ⇒ V (s) = V ′(s ′))

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

In a bisimulation between two Kripke models M = 〈S ,V ,R〉 and
M ′ = 〈S ,V ′,R ′〉, form a relation <B ⊆ S × S ′ that satisfies the
following properties,

1 <B satisfies forward choice if

∀s, t ∈ S
∀s ′ ∈ S ′(<Bss ′&(s, t) ∈ R)⇒ ∃t ′ ∈ S ′(<Btt ′&(s ′, t ′) ∈ R ′)

2 <B satisfies backwards choice if

∀s ∈ S
∀s ′, t ′ ∈ S ′(<Bss ′&(s ′, t ′) ∈ R ′)⇒ ∃t ∈ S(<Btt ′&(s, t) ∈ R)

3 Satisfies forward and backward choice, and
∀s ∈ S∀s ′ ∈ S ′(<Bss ′ ⇒ V (s) = V ′(s ′))

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

A zig zag morphism is a bisimulation between two Kripke models
M = 〈S ,V ,R〉 and M ′ = 〈S ,V ′,R ′〉, in terms of relation
<B ⊆ S × S ′ that satisfies forwards and backwards choice and
additionally satisfies,

domain(<B) = S and range(<B) = S ′

The Zig-zag idea

Segerberg (1970)

van Bentham (1983) and Plotkin and Stirling (1986)

van der Hoek (1992)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

A zig zag morphism is a bisimulation between two Kripke models
M = 〈S ,V ,R〉 and M ′ = 〈S ,V ′,R ′〉, in terms of relation
<B ⊆ S × S ′ that satisfies forwards and backwards choice and
additionally satisfies,

domain(<B) = S and range(<B) = S ′

The Zig-zag idea

Segerberg (1970)

van Bentham (1983) and Plotkin and Stirling (1986)

van der Hoek (1992)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Definition

A zig zag morphism is a bisimulation between two Kripke models
M = 〈S ,V ,R〉 and M ′ = 〈S ,V ′,R ′〉, in terms of relation
<B ⊆ S × S ′ that satisfies forwards and backwards choice and
additionally satisfies,

domain(<B) = S and range(<B) = S ′

The Zig-zag idea

Segerberg (1970)

van Bentham (1983) and Plotkin and Stirling (1986)

van der Hoek (1992)

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Bisimulation is not canonical (it is weaker than graph
isomorphism), example:

•v2

##FFF

•v1

;;xxx

##FFF •v4 // •v5

•v3

;;xxx

G

•v ′
3

!!CCC

•v ′
1

// •v ′
2

=={{{

!!CCC •v ′
5

•v ′
4

=={{{

G ′

<B = {(v ′1, v1), (v ′2, v2), (v ′2, v3), (v ′3, v4), (v ′4, v4), (v ′5, v5)}

Furthermore, for possible world structures, branching (sub-tree)
bisimulation is NP-Complete (Dovier, 2003, subgraph
bisimulation).

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Bisimulation is not canonical (it is weaker than graph
isomorphism), example:

•v2

##FFF

•v1

;;xxx

##FFF •v4 // •v5

•v3

;;xxx

G

•v ′
3

!!CCC

•v ′
1

// •v ′
2

=={{{

!!CCC •v ′
5

•v ′
4

=={{{

G ′

<B = {(v ′1, v1), (v ′2, v2), (v ′2, v3), (v ′3, v4), (v ′4, v4), (v ′5, v5)}

Furthermore, for possible world structures, branching (sub-tree)
bisimulation is NP-Complete (Dovier, 2003, subgraph
bisimulation).

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Bisimulation is not canonical (it is weaker than graph
isomorphism), example:

•v2

##FFF

•v1

;;xxx

##FFF •v4 // •v5

•v3

;;xxx

G

•v ′
3

!!CCC

•v ′
1

// •v ′
2

=={{{

!!CCC •v ′
5

•v ′
4

=={{{

G ′

<B = {(v ′1, v1), (v ′2, v2), (v ′2, v3), (v ′3, v4), (v ′4, v4), (v ′5, v5)}

Furthermore, for possible world structures, branching (sub-tree)
bisimulation is NP-Complete (Dovier, 2003, subgraph
bisimulation).

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Calculus of communicating systems (CCS) (Milne, 1984)

Example: a(b + c) a.b + a.c

•

• a // •
b ??~~~

c
��

@@@

•
G

• b //

•
a ??~~~

a
��

@@@

• c //

G ′

τ transitions and branching time abstraction in bisimulation
semantics (van Gabbek, 1996)

However: generally utilised to establish correspondence based on
observed computation histories, as opposed to correspondence of
forward branching possible world structures.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Calculus of communicating systems (CCS) (Milne, 1984)

Example: a(b + c) a.b + a.c

•

• a // •
b ??~~~

c
��

@@@

•
G

• b //

•
a ??~~~

a
��

@@@

• c //

G ′

τ transitions and branching time abstraction in bisimulation
semantics (van Gabbek, 1996)

However: generally utilised to establish correspondence based on
observed computation histories, as opposed to correspondence of
forward branching possible world structures.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Calculus of communicating systems (CCS) (Milne, 1984)

Example: a(b + c) a.b + a.c

•

• a // •
b ??~~~

c
��

@@@

•
G

• b //

•
a ??~~~

a
��

@@@

• c //

G ′

τ transitions and branching time abstraction in bisimulation
semantics (van Gabbek, 1996)

However: generally utilised to establish correspondence based on
observed computation histories, as opposed to correspondence of
forward branching possible world structures.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Observations

Calculus of communicating systems (CCS) (Milne, 1984)

Example: a(b + c) a.b + a.c

•

• a // •
b ??~~~

c
��

@@@

•
G

• b //

•
a ??~~~

a
��

@@@

• c //

G ′

τ transitions and branching time abstraction in bisimulation
semantics (van Gabbek, 1996)

However: generally utilised to establish correspondence based on
observed computation histories, as opposed to correspondence of
forward branching possible world structures.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Graph isomorphism as an equivalence relation

Let us define a relation <I on graphs by G1<G2 if G1 is isomorphic
to G2, <I is

reflexive,

symmetric and

transitive,

and therefore graph isomorphism is an equivalence relation.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Attributed graph isomorphism

•v1
a

xxx aFFF

•v4
a

b 888888 •v2

c������

•v3

G

•v ′
1 aDD

•v ′
2

a
c

������
•v ′

4

a
zz

b

222222

•v ′
3

G ′

Bisimulation could solve this problem if (i) could differentiate
between states and (ii) considered sufficiently long paths, for
example the following bisimulation relation is impossible between
graphs G1 and G2

<B = {(v ′1, v1), (v ′2, v2), (v ′4, v4), (v ′1, v1)}

However, in general there are exponentially many paths
(consistent with NP-complete result).

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Attributed graph isomorphism

•v1
a

xxx aFFF

•v4
a

b 888888 •v2

c������

•v3

G

•v ′
1 aDD

•v ′
2

a
c

������
•v ′

4

a
zz

b

222222

•v ′
3

G ′

Bisimulation could solve this problem if (i) could differentiate
between states and (ii) considered sufficiently long paths, for
example the following bisimulation relation is impossible between
graphs G1 and G2

<B = {(v ′1, v1), (v ′2, v2), (v ′4, v4), (v ′1, v1)}

However, in general there are exponentially many paths
(consistent with NP-complete result).

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Attributed graph isomorphism

•v1
a

xxx aFFF

•v4
a

b 888888 •v2

c������

•v3

G

•v ′
1 aDD

•v ′
2

a
c

������
•v ′

4

a
zz

b

222222

•v ′
3

G ′

Bisimulation could solve this problem if (i) could differentiate
between states and (ii) considered sufficiently long paths, for
example the following bisimulation relation is impossible between
graphs G1 and G2

<B = {(v ′1, v1), (v ′2, v2), (v ′4, v4), (v ′1, v1)}

However, in general there are exponentially many paths
(consistent with NP-complete result).

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Publications

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe
Y. Vardi. Rea- soning about Knowledge. The MIT Press,
Cambridge, Massachesetts, 1995.

Joseph Y. Halpern and Yoram Moses, Knowledge and
Common Knowledge in a Distributed Environment, Journal of
the ACM, Vol. 37, No. 3, pp. 549–587, 1990.

Richard Scherl and Hector Levesque. Knowledge, Action, and
the Frame Problem. Artificial Intelligence, 144:1-39, 2003.

Ryan F. Kelly and Adrian R. Pearce. Knowledge and
Observations in the Situation Calculus. In Proceedings of the
6th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS’07), pages 841-843, 2007.

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Publications (continued)

Ryan F. Kelly and Adrian R. Pearce. Complex Epistemic
Modalities in the Situation Calculus. In Proceedings of the
11th International Conference on Principles of Knowledge
Representation and Reasoning (KR’08), pages 611-620, 2008.

Ryan Kelly. ”Asynchronous Multi-Agent Reasoning in the
Situation Calculus”, PhD Thesis, The University of
Melbourne, 2008

Introduction Asynchronicity Kripke models Observations Knowledge Group Knowledge Bisimulation

Summary

1 Introduction

2 Asynchronicity

3 Kripke models

4 Observations

5 Knowledge

6 Group Knowledge

7 Bisimulation

	Introduction
	Asynchronicity
	Kripke models
	Observations
	Knowledge
	Group Knowledge
	Bisimulation

