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Mean shift represents a general non-parametric mode finding/clustering proce-
dure. In contrast to the classic K-means clustering approach (Duda, Hart & Stork,
2001), there are no embedded assumptions on the shape of the distribution nor the
number of modes/clusters. Mean shift was first proposed by Fukunaga and Hostetler
(Fukunaga & Hostetler, 1975), later adapted by Cheng (Cheng, 1995) for the purpose
of image analysis and more recently extended by Comaniciu, Meer and Ramesh to
low-level vision problems, including, segmentation (Comaniciu & Meer, 2002), adap-
tive smoothing (Comaniciu & Meer, 2002) and tracking (Comaniciu, Ramesh & Meer,
2003).

The main idea behind mean shift is to treat the points in the d-dimensional feature
space as an empirical probability density function where dense regions in the feature
space correspond to the local maxima or modes of the underlying distribution. For
each data point in the feature space, one performs a gradient ascent procedure on the
local estimated density until convergence. The stationary points of this procedure
represent the modes of the distribution. Furthermore, the data points associated (at
least approximately) with the same stationary point are considered members of the
same cluster.

Next we review several of the technical details behind mean shift (for further
details, see (Cheng, 1995; Comaniciu & Meer, 2002)).

Given n data points xi ∈ Rd, the multivariate kernel density estimate using a
radially symmetric kernel1 (e.g., Epanechnikov and Gaussian kernels), K(x), is given
by,
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where h (termed the bandwidth parameter) defines the radius of kernel. The radially
symmetric kernel is defined as,

K(x) = ckk(‖x‖2), (2)

1Note that the mean shift procedure has been extended to anisotropic kernels (Wang, Thiesson,
Xu & Cohen, 2004).
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where ck represents a normalization constant. Taking the gradient of the density
estimator (1) and some further algebraic manipulation yields,
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where g(x) = −k′(x) denotes the derivative of the selected kernel profile. The first
term is proportional to the density estimate at x (computed with the kernel G =
cgg(‖x‖2)). The second term, called the mean shift vector, m, points toward the
direction of maximum increase in density and is proportional to the density gradient
estimate at point x obtained with kernel K. The mean shift procedure for a given
point xi is as follows: (see Fig. 1):

1. Compute the mean shift vector m(xt
i).

2. Translate density estimation window: xt+1
i = xt

i + m(xt
i).

3. Iterate steps 1. and 2. until convergence, i.e., ∇f(xi) = 0.

For a proof of convergence, see (Comaniciu & Meer, 2002).
The most computationally expensive component of the mean shift procedure cor-

responds to identifying the neighbours of a point in space (as defined by the kernel
and its bandwidth); this problem is known as multidimensional range searching in the
computational geometry literature. This computation becomes unwieldly for high di-
mensional feature spaces. Proposed solutions to this problem include, embedding the
mean shift procedure into a fine-to-coarse hierarchical bandwidth approach (DeMen-
thon & Megret, 2002) and employing approximate nearest-neighbour hashing-based
search (Georgescu, Shimshoni & Meer, 2003).

Finally, a limitation of the standard mean shift procedure is that the value of the
bandwidth parameter is unspecified. For representative solutions to the bandwidth
selection problem, see (Comaniciu, Ramesh & Meer, 2001; Singh & Ahuja, 2003;
Wang, Thiesson, Xu & Cohen, 2004).
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Figure 1: Mean shift procedure. Starting at data point xi, run the mean shift pro-
cedure to find the stationary points of the density function. Superscripts denote the
mean shift iteration, the shaded and black dots denote the input data points and
successive window centres, respectively, and the dotted circles denote the density
estimation windows.
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