
The Relative Complexity of NP Search Problems

Paul Beame

�

Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

beame@cs.washington.edu

Stephen Cook

y

Computer Science Dept.

University of Toronto

Canada M5S 1A4

sacook@cs.toronto.edu

Jeff Edmonds

z

Department of Computer Science

York University

Toronto, Ontario

Canada M3J 1P3

jeff@cs.yorku.ca

Russell Impagliazzo

x

Computer Science and Engineering

UC, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0114

russell@cs.ucsd.edu

Toniann Pitassi

{

Department of Computer Science

University of Arizona

Tucson, AZ 85721-0077

toni@cs.arizona.edu

August 1, 1997

�

Research supported by NSF grants CCR-8858799 and CCR-9303017

y

Research supported by an NSERC operating grant and the Information Technology Research Centre

z

Supported by an NSF postdoctoral fellowship and by a Canadian NSERC postdoctoral fellowship

x

Research Supported by NSF YI Award CCR-92-570979, Sloan Research Fellowship BR-3311, grant #93025 of

the joint US-Czechoslovak Science and Technology Program, and USA-Israel BSF Grant 92-00043

{

Research supported by an NSF postdoctoral fellowship and by NSF Grant CCR-9457782

1

Abstract

Papadimitriou introduced several classes of NP search problems based on combinatorial

principles which guarantee the existence of solutions to the problems. Many interesting search

problems not known to be solvable in polynomial time are contained in these classes, and a

number of them are complete problems. We consider the question of the relative complexity

of these search problem classes. We prove several separations which show that in a generic

relativized world, the search classes are distinct and there is a standard search problem in each

of them that is not computationally equivalent to any decision problem. (Naturally, absolute

separations would imply that P 6= NP.) Our separation proofs have interesting combinatorial

content and go to the heart of the combinatorial principles on which the classes are based.

We derive one result via new lower bounds on the degrees of polynomials asserted to exist by

Hilbert's Nullstellensatz over �nite �elds.

1 Introduction

In the study of computational complexity, there are many problems that are naturally expressed as

problems \to �nd" but are converted into decision problems to �t into standard complexity classes.

For example, a more natural problem than determining whether or not a graph is 3-colorable might

be that of �nding a 3-coloring of the graph if it exists. One can always reduce a search problem to

a related decision problem and, as in the reduction of 3-coloring to 3-colorability, this is often by a

natural self-reduction which produces a polynomially equivalent decision problem.

However, it may also happen that the related decision problem is not computationally equivalent

to the original search problem. This is particularly important in the case when a solution is

guaranteed to exist for the search problem. For example, consider the following problems:

1. Given a list a

1

; ::a

n

of residues mod p, where n > log p, �nd two distinct subsets S

1

; S

2

�

f1; ::ng so that �

i2S

1

a

i

mod p = �

i2S

2

a

i

mod p. The existence of such sets is guaranteed by

the pigeonhole principle, but the search problem is at least as di�cult as discrete log modulo

p. It arises from the study of cryptographic hash functions.

2. Given a weighted graph G, �nd a travelling salesperson tour T of G that cannot be improved

by swapping the successors of two nodes. This problem arises from a popular heuristic for

TSP called 2-OPT. Again, the existence of such a tour is guaranteed, basically because any

�nite set of numbers has a least element, but no polynomial-time algorithm for this problem

is known.

3. Given an undirected graph G where every node has degree exactly 3, and a Hamiltonian

circuit H of G �nd a di�erent Hamiltonian circuit H

0

. A solution is guaranteed to exist by an

interesting combinatorial result called Smith's Lemma. The proof constructs an exponential

size graph whose odd degree nodes correspond to circuits of G, and uses the fact that every

graph has an even number of odd degree nodes.

In [JPY88, Pap90, Pap91, Pap94, PSY90], an approach is outlined to classify the exact com-

plexity of problems such as these, where every instance has a solution. Of course, one could (and

we later will) de�ne the class TFNP of all search problems with this property, but this class is

not very nice. In particular, since the reasons for being a member of TFNP seem as diverse as

all of mathematics, di�erent combinatorial lemmas being required for di�erent problems, it seems

unlikely that TFNP has any complete problem.

As an alternative, the papers above concern themselves with \syntactic" sub-classes of TFNP,

where all problems in the sub-class can be presented in a �xed, easily veri�able format. These

classes correspond to combinatorial lemmas: for problems in the class, a solution is guaranteed to

exist by this lemma. For example, the class PPA is based on the lemma that every graph has an

even number of odd-degree nodes; the class PLS is based on the lemma that every directed acyclic

graph has a sink; and the class PPP on the pigeonhole principle. The third example above is thus

in PPA, the second in PLS and the �rst in PPP. The class PPAD is a directed version of PPA;

the combinatorial lemma here is this: \Every directed graph with an imbalanced node (indegree

di�erent from outdegree) must have another imbalanced node." It is shown in [Pap94] that all

these classes can be de�ned in a syntactic way.

As demonstrated in the papers listed above, these classes satisfy the key litmus test for an inter-

esting complexity class: they contain many natural problems, some of which are complete. These

problems include computational versions of Sperner's Lemma, Brouwer's Fixed Point Theorem,

the Borsuk-Ulam Theorem, and various problems for �nding economic equilibria. Thus they pro-

vide useful insights into natural computational problems. From a mathematical point of view they

are also interesting: they give a natural means of comparison between the \algorithmic power" of

combinatorial lemmas. Thus, it is important to classify the inclusions between these classes, both

because such classi�cation yields insights into the relative plausibility of e�cient algorithms for

natural problems, and because such inclusions reveal relationships between mathematical princi-

ples.

Many of these problems are more naturally formulated as type 2 computations in which the

input, consisting of local information about a large set, is presented by an oracle. Moreover, each

of the complexity classes we consider can be de�ned as the type 1 translation of some natural

type 2 problem. We thus consider the relative complexity of these search classes by considering

the relationships between their associated type 2 problems. Our main results are several type 2

separations which imply that in a generic relativized world, the type 1 search classes we consider

are distinct and there is a standard problem in each of them that is not equivalent to any decision

problem. (Naturally, absolute type 1 separations would imply that P 6= NP.) In fact, our separations

are robust enough that they apply also to the Turing closures of the search classes with respect

to any generic oracle. Such generic oracle separations are particularly nice because generic oracles

provide a single view of the relativized world: two classes are separated by one generic oracle i�

they are separated by all generic oracles.

The proofs of our separations have quite interesting combinatorial content. In one example,

via a series of reductions using methods similar to those in [BIK

+

94], we derive our result via new

lower bounds on the degrees of polynomials asserted to exist by Hilbert's Nullstellensatz over �nite

�elds. The lower bound we obtain for the degree of these polynomials is
(n

1=4

) where n is the

number of variables and this is substantially stronger than the
(log

�

n) bound that was shown

(for a somewhat di�erent system) in [BIK

+

94].

2

2 The Search Classes

2.1 Type 1 and type 2 problems

A decision problem in NP can be given by a polynomial time relation R and a polynomial p

such that R(x; c) implies jcj � p(jxj). The decision problem is \given x, determine whether there

exists c such that R(x; c) ". The associated NP search problem is \given x, �nd c such that

R(x; c) holds, if such c exists". We denote the search problem by a multi-valued function Q, where

Q(x) = fc j R(x; c)g; that is Q(x) is the set of possible solutions for problem instance x. The

problem is total if Q(x) is nonempty for all x. FNP denotes the class of all NP search problems,

and TFNP denotes the set of all total NP search problems.

The sub-classes of TFNP de�ned by Papadimitriou all have a similar form. Each input x

implicitly determines a structure, like a graph or function, on an exponentially large set of \nodes",

in that computing local information about node v (e.g., the value of the function on v or the

set of v's neighbors) can be done in polynomial-time given x and v. A solution is a small sub-

structure, a node or polynomial size set of nodes, with a property X that can be veri�ed using

only local information. The existence of the solution is guaranteed by a lemma \Every structure

has a sub-structure satisfying property X." For example, an instance of a problem in the class

PPP of problems proved total via the pigeon-hole principle, consists of a poly(n) length description

x of a member f

x

= �y:f(x; y) of a family of (uniformly) polynomial-time functions from f0; 1g

n

to f0; 1g

n

� 0

n

. A solution is a pair y

1

; y

2

of distinct n bit strings with f

x

(y

1

) = f

x

(y

2

), which of

course must exist.

It is natural to present such search problems as second order objects Q(�; x), where � is a

function (\oracle" input) which, when appropriate, can describe a graph by giving local information

(for example �(v) might code the set of neighbors of v). Thus Q(�; x) is a set of strings; the possible

solutions for problem instance (�; x). As before we require that solutions be checkable in polynomial

time, and the verifying algorithm is allowed access to the oracle �.

Proceeding more formally, we consider strings x over the binary alphabet f0,1g, functions �

from strings to strings, and type 2 functions (i.e. operators) F taking a pair (�; x) to a string

Class Name of Q Instance of Q Solutions for Q

PPA LEAF

Undirected Graph on f0; 1g

�n

with degree � 2

any leaf c 6= 0

n

0

n

, if 0

n

is not a leaf

PPAD SOURCE.OR.SINK

Directed graph on f0; 1g

�n

with in-degree, out-degree � 1

any source or sink c 6= 0

n

0

n

, if 0

n

is not a source

PPADS SINK

Directed graph on f0; 1g

�n

with in-degree, out-degree � 1

any sink c 6= 0

n

0

n

, if 0

n

is not a source

PPP PIGEON

Function f

f : f0; 1g

�n

! f0; 1g

�n

any pair (c; c

0

), c 6= c

0

with f(c) = f(c

0

) 6= 0

n

any c

00

with f(c

00

) = 0

n

Figure 1: Some complexity classes of search problems

3

y. We follow Townsend [Tow90] in de�ning such an F to be polynomial time computable if it is

computable in deterministic time that is polynomial in jxj with calls to � at unit cost. Note that

since the time bound depends on jxj and not �, a machine computing F may not have time to

read a long value �(y) returned by the oracle. We can de�ne a type 2 search problem Q to be a

function that associates with each string function � and each string x a set Q(�; x) of strings that

are the allowable answers to the problem on inputs � and x. Such a problem Q is in FNP

2

if Q is

polynomial-time checkable in the sense that y 2 Q(�; x) is a type 2 polynomial-time computable

predicate, and all elements of Q(�; x) are of length polynomially bounded in jxj.

A problem Q is total if Q(�; x) is nonempty for all � and x. TFNP

2

is the subclass of total

problems in FNP

2

. An algorithm A solves a total search problem Q if and only if for each function

� and string x, A(�; x) 2 Q(�; x). FP

2

consists of those problems in TFNP

2

which can be solved

by deterministic polynomial time algorithms.

2.2 The classes de�ned

Each of Papadimitriou's classes can be de�ned as a set of type 1 problems reducible to a �xed type

2 problem.

We say that a type 2 problem Q

1

is many-one reducible to a type 2 problem Q

2

(written Q

1

�

m

Q

2

) if there exist type 2 polynomial-time computable functions F , G, and H, such that H(�; x; y)

is a solution to Q

1

on input (�; x) for any y that is a solution to Q

2

on input (G[�; x]; F (�; x)),

where G[�; x] = �z:G(�; x; z). (The special case in which H(�; x; y) � y is referred to as strong

reducibility in the appendix.) It is straightforward to check that many-one reducibility is transitive.

Below we apply the de�nition of many-one reducibility to the case in which Q

1

is type 1, which

can be done by treating Q

1

as a type 2 problem which ignores its function input �. The de�nition

then becomes: H(x; y) is a solution to Q

1

on input x for any y that is a solution to Q

2

on input

(G[x]; F (x)), where G[x] = �z:G(x; z). If Q

2

is also type 1, then the de�nition is the same with G

and its arguments omitted.

Associated with each type 2 problemQ in TFNP

2

we de�ne the type 1 class CQ of all problems in

TFNP which are many-one reducible to Q. Thus each class CQ is closed under many-one reducibility

within TFNP. We summarize Papadimitriou's classes in this format in Figure 2.1. Each class is

of the form CQ for some Q 2 TFNP

2

which we name and briey describe. The notation f0; 1g

�n

denotes the set of nonempty strings of length n or less. We assume that n is given in unary as the

standard part of the input to Q.

For example, in the problem LEAF the arguments (�; x) describe a graph G = G(�; jxj) of

maximum degree two whose nodes are the nonempty strings of length jxj or less, and �(u) codes

the set of 0, 1, or 2 nodes adjacent to u. An edge (u; v) is present in G i� both �(u) and �(v) are

proper codes and �(u) contains v and �(v) contains u. A leaf is a node of degree one. We want

the node 0:::0 = 0

n

to be a leaf (the standard leaf in G). The search problem LEAF is: `Given �

and x, �nd a leaf of G = G(�; jxj) other than the standard one, or output 0...0 if it is not a leaf of

G'. That is, LEAF(�; x) is the set of nonstandard leaves of G(�; jxj) together with, in case 0...0 is

not a leaf of G, the node 0...0.

It should be clear that LEAF is a total NP search problem and hence a member of TFNP

2

.

Further, since the search space has exponential size, a simple adversary argument shows that no

4

deterministic polynomial time algorithm solves LEAF. Hence LEAF is not in FP

2

.

Continuing with this example, we see from Figure 2.1 that Papadimitriou's class PPA is the class

of problems in TFNP which are many-one reducible to LEAF. Thus a member Q of PPA is presented

by a trio of polynomial-time functions F , G, and H. For each input x to Q, G[x] codes a graph of

maximum degree 2 whose nodes are the nonempty strings of length jF (x)j or less. For each node u

in this graph, G(x; u) is a string encoding the set of nodes adjacent to u. For each nonstandard leaf

u of this graph, H(x; u) must be a member of Q(x). Possibly Q(x) contains additional strings not

of this form, but since Q 2 TFNP, the relation `y 2 Q(x)' must be recognizable in polynomial-time.

The classes de�ned from these problems are interesting for more than just the lemmas on which

they are based. There are many natural problems in them. Here are some examples in the �rst

order classes PPAD, PPA, and PPP from [Pap94]. Problems in PPAD include, among others: �nding

a panchromatic simplex asserted to exist by Sperner's Lemma, �nding a �xed point of a function

asserted to exist by Brouwer's Fixed Point Theorem, and �nding the antipodal points on a sphere

with equal function values asserted to exist by the Borsuk-Ulam Theorem (where in each case the

input structure itself is given implicitly via a polynomial time Turing machine, but could be given

by an oracle). Several of these are complete. Problems in PPA not known to be in PPAD include

�nding a second solution of an underdetermined system of polynomial equations modulo 2 that is

asserted to exist by Chevalley's Theorem and �nding a second Hamiltonian path in an odd-degree

graph given the �rst. The problem Pigeonhole Circuit is a natural complete problem for PPP.

The class PPADS is called PSK in [Pap90], where it is incorrectly said to be equivalent to PPAD.

We note here that a natural problem complete for PPADS is Positive Sperner's Lemma (for dimen-

sions three and above), which is exactly like Sperner's Lemma except that only a panchromatic

simplex that is positively oriented is allowed as a solution.

2.3 Relativized classes and Turing reducibility

By an oracle A we mean simply a set of strings. We can use our second order setting to de�ne

relativized classes by replacing a function argument � by an oracle A, where now we interpret A

as a characteristic function: A(x) = 1 if x 2 A and A(x) = 0 otherwise. Thus we de�ne TFNP

A

to

be the set of all type 1 problems Q(A; �), for Q 2 TFNP

2

. Note that this is more restrictive than

simply requiring Q to be in FNP

2

and Q(A; �) to be total.

De�ne the relativized class (CQ)

A

to be the subclass of TFNP

A

consisting of all problems

Q

1

(A; �), where Q

1

is any problem in TFNP

2

many-one reducible to Q. Equivalently (CQ)

A

is the

set of all problems in TFNP

A

many-one-A reducible to Q, where now the su�x A means that the

reduction is allowed to query the oracle A; precisely, A replaces � as arguments to the functions F ,

G, and H used in the de�nition of many-one reducibility in the previous subsection. Notice that

(CQ)

A

= CQ when A 2 P.

The following theorem shows that the problem of separating relativized NP search classes is

equivalent to separating them relative to any generic oracle [BI87], and also equivalent to showing

that there is no reduction between the corresponding type 2 problems.

Theorem 1: Let Q

1

; Q

2

2 TFNP

2

. The following are equivalent: (i) Q

1

is many-one reducible

to Q

2

; (ii) For all oracles A, (CQ

1

)

A

� (CQ

2

)

A

; (iii) There exists a generic oracle G such that

5

α

x

y Q (, x)αε

β
z

Q

ε β

1

2

u Q (, z)
2

M

Figure 2: Reducing Q

1

to Q

2

(CQ

1

)

G

� (CQ

2

)

G

.

The proof appears in [CIY97].

In order to state the full power of our separation results, we now de�ne a more general form

of reduction among total search problems: We say Q

1

is polynomial-time Turing reducible to Q

2

,

(or simply Q

1

is reducible to Q

2

, written Q

1

� Q

2

), if there is some polynomial-time machine M

that on input (�; x) and an oracle for Q

2

outputs some y 2 Q

1

(�; x). (Recall that M 's input � is a

string function which it accesses via oracle calls.) (See Figures 2 and 3.) For each query to the Q

2

oracle, M must provide some pair (�; z) as input where � is a string function. For M to be viewed

as a polynomial-time machine, the �'s that M speci�es must be computable in polynomial time

given the things to which M has access: �, x, and the sequence t of answers that M has received

from previous queries to Q

2

. We thus view the reduction as a pair of polynomial-time algorithms:

M , and another polynomial-time machine M

�

which computes � as a function of �, x, and t. M

must produce a correct y for all choices of answers that could be returned by Q

2

.

Notice that Q

1

is many-one reducible to Q

2

i� Q

1

reduces to Q

2

as above, butM makes exactly

one query to an instance of Q

2

.

A statement similar to Theorem 1 holds for the case of Turing reductions with the many-one

closures replaced by Turing closures for the type 1 classes. All reductions we exhibit are many-

one reductions, so with this theorem they give inclusions or alternative characterizations of the

classes de�ned in [Pap94]. All separations we exhibit hold even against Turing reductions, so they

show oracle separations between the Turing closures of the related type 1 search classes and these

6

β (v)

αx t

M *

v

Figure 3: Detail showing �'s computation

separations apply to all generic oracles.

2.4 Some simple reductions

It is easy to see that SOURCE:OR:SINK �

m

LEAF, by ignoring the direction information on the

input graph. Also it is immediate that SOURCE:OR:SINK �

m

SINK.

It is not hard to see that SINK �

m

PIGEON : Let G be the input graph for SINK. The

corresponding input function f to PIGEON maps nodes of G as follows. If v is a sink of G then

let f(v) = 0:::0; if there is an edge from v to u in G then let f(v) = u; and if v is isolated in G,

let f(v) = v. Then the possible answers to PIGEON coincide exactly with the possible answers to

SINK.

Our main results are that all three of these reductions fail in the reverse direction even when

allowing more general Turing reductions. The containments of the corresponding type 1 classes

(with respect to any oracle) are shown in Figure 4.

2.5 Equivalent problems

We say that two problems are equivalent if each is reducible (under �) to the other, and they are

many-one equivalent if each is many-one reducible (under �

m

) to the other. It is interesting (and

also relevant to our separation arguments) that there are several problems many-one equivalent

to LEAF, based on di�erent versions of the basic combinatorial lemma \every graph has an even

number of odd-degree nodes." Strictly speaking, LEAF is based on a special case of this lemma,

where the graph has degree at most two. A more general problem, denote it ODD, is the one in

7

LEAF

SINK

PIGEON

TFNP

PPA

PPAD
PPADS

PPP

Figure 4: Search class relationships in a generic relativized world

which the degree is not two, but bounded by a polynomial in the length of the input x. That is,

�(v) codes a set of polynomially many, as opposed to at most two, nodes, and we are seeking a

node v 6= 0:::0 of odd degree (or 0...0 if that node is not of odd degree).

Another variant of the same lemma is this: \Every graph with an odd number of nodes has a

node with even degree." To de�ne a corresponding problem, denoted EVEN, we would have �(v)

again be a polynomial set of nodes, only now �(0:::0) = ;. This last condition will essentially

leave node 0:::0 out of the graph thus rendering the number of nodes odd. We are seeking a node

v 6= 0:::0 of even degree (or 0...0 if that node is not isolated).

In the special case where the graph has maximum degree one, this version of the lemma is

\there is no perfect matching of an odd set of nodes." An input pair (�; x) now codes a graph

GM(�; jxj) which is a partial matching. The nodes, as before, are the nonempty strings of length

jxj or less, and there is an edge between nodes u and v i� (i) u 6= v, (ii) �(v) = u, (iii) �(u) = v,

and (iv) neither u nor v is the standard node 0...0. Thus 0...0 is always unmatched, and we are

seeking a second unmatched (or lonely) node v. This search problem is denoted LONELY.

Theorem 2: The problems LEAF, ODD, EVEN, and LONELY are all many-one equivalent.

8

Proof: To show that LEAF �

m

LONELY consider an input (�; x) to LEAF, representing a graph

G = G(�; jxj). We transform (�; x) to an input (�; x1) to LONELY. We describe � implicitly by

describing the partial matching G2 = GM(�; jx1j).

Assume �rst that the standard node 0:::0 is a leaf of G. G2 has all nodes of G, plus a copy v

0

of each such node v. We place edges in G2 in such a way that the leaves of G are precisely the

unmatched nodes in G2. For each isolated node v in G there is an edge in G2 matching node v

and its copy v

0

. For each edge fu; vg in G there is an edge in G2 matching one of u or v

0

to one

of v or v

0

. Which of the node or its copy to use for the edge in G2 corresponding to fu; vg in G

is locally determined as follows. For a node v in G with one incident edge fu; vg, in graph G2 its

copy v

0

is used for the corresponding edge and the node v is left unmatched. For a node v in G

with two incident edges, fu; vg and fv; wg, we decide which of v or v

0

to use for each edge based

on the lexicographic ordering of the node names of its neighbors, u and w. If u lexicographically

precedes w then in G2 the node v will be used in the edge corresponding to fu; vg and the node v

0

will be used in the edge corresponding to fv; wg. If w lexicographically precedes u then in G2 the

node v will be used in the edge corresponding to fv; wg and the node v

0

will be used in the edge

corresponding to fu; vg.

Note that for each node v in G2, the mate �(v) can be determined with at most four calls to

�. It is each to verify that, as claimed, the leaves of G are precisely the unmatched nodes in G2.

If the standard node 0:::0 = 0

m

is not a leaf of G then de�ne G2 to have a standard node

0:::0 = 0

m+1

, vertex x0 matched with x1 for each x 6= 0

m

or 0

m�1

, and vertex 0

m

1 matched with

0

m�1

1. In this case, the unmatched nodes of G2 are its standard node and 0

m

, so the only choice

for the second lonely node of G2 is 0

m

, the standard node of G. Thus in either case we have

LEAF(�; x) = LONELY (�; x1).

That LONELY �

m

EVEN is obvious. To convert any problem in EVEN into one in ODD,

just add to the graph all edges of the form fv0; v1g joining nodes with all bits the same except for

the last; unless this edge is already present, in which case remove it. This will make 0...0 into the

standard leaf, and make all even-degree nodes into odd-degree nodes and vice versa.

Finally, ODD �

m

LEAF follows from the \chessplayer algorithm" of [Pap90, Pap94] which

makes explicit the local edge-pairing argument that is involved in the standard construction of

Euler tours. For completeness we give this construction: Given an input graph G to ODD we

transform it to an input graph GL to LEAF. Let 2d be an upper bound on the degree of any node

in G. The nodes of GL are pairs (v; i) where v is a node in G and 1 � i � d, plus the original

nodes of G. Suppose that the neighbors of v in G are v

1

; : : : ; v

m

in lexicographical order and v

is, respectively, the i

1

; : : : ; i

m

-th neighbor of each of them in lexicographical order. Basically, the

corresponding edges in GL are f(v; dj=2e); (v

j

; di

j

=2e)g for j = 1; : : : ;m. In this way the edges

about each node in G are paired up consistently in GL creating a graph of maximum degree 2. It

is easy to see that m is odd if and only if the node (v; dm=2e) is a leaf. To make the reduction

strong (see appendix) we can make the name of the leaf node the same as in the original problem

by replacing the node (v; dm=2e) by the node v if m is odd. The construction may be completed

in polynomial time without much di�culty. 2

One could give directed versions of ODD which would generalize SOURCE.OR.SINK to IM-

BALANCE and SINK to EXCESS, where instead of up to one predecessor and one successor, any

polynomial number of predecessors and successors is allowed. In these de�nitions, the search prob-

9

lem would be to �nd a nonstandard node with an imbalance of indegree and outdegree (respectively,

an excess of indegree over outdegree.) The Euler tour argument given above shows that these new

problems are equivalent to the original ones.

3 Separation Results

3.1 PPA

G

is not included in PPP

G

Theorem 3: LONELY is not reducible to PIGEON.

Proof: Suppose to the contrary that LONELY � PIGEON . Let M and M

�

be as in the

de�nition of � in Section 2.3 (see also Figures 1 and 2). Consider an input (�; x) to LONELY and

the corresponding graph G = GM(�; n), where n = jxj. On input (�; x), the machines M and M

�

make queries to the oracles � and PIGEON and �nally M outputs a lonely node in G. Our task

is to �nd � and x and suitable answers to the queries made to PIGEON so that M 's output is

incorrect.

Fix some large n and some x of length n. Then the nodes of G are the nonempty strings of

length n or less, and the edges of G are determined by the values �(v) for v a node of G. For

any string v not a node of G we specify �(v) = � (the empty string). (Such values are irrelevant

to the graph G and hence to the de�nition of a correct output.) Also we specify �(0:::0) = �,

since the standard node should be unmatched. For nonstandard nodes v we specify �(v) implicitly

by specifying the edges of G. We do this gradually as required to answer queries. The goal is to

answer all queries without ever specifying any particular nonstandard node v to be unmatched.

In that way M is forced to output a lonely node without knowing one, and we can complete the

speci�cation of G so that its answer is incorrect.

In general, after i steps of M 's computation, we will have answered all queries made so far by

specifying that certain edges are present in G. These edges comprise a partial matching �

i

, where

the number of edges in �

i

is bounded by a polynomial in n. Suppose that step i + 1 is a query v

to �. If that query cannot be answered by �

i

and our initial speci�cations, then we set �(v) = w,

where w 6= 0:::0 is any unmatched node, and form �

i+1

by adding the edge fv; wg to �

i

.

Now suppose step i+ 1 is a query (�; z) to PIGEON , specifying a function f = f

<�;jzj>

. Here

f is the restriction of � to the set of nonempty strings of length jzj or less, except f(c) = 0:::0 in

case �(c) is either empty or of length greater than jzj. Then we must return either a pair (c; c

0

),

with c 6= c

0

and f(c) = f(c

0

) 6= 0:::0, or c

00

with f(c

00

) = 0:::0. Our task is to show that a possible

return value can be determined by adding only polynomially many edges to the partial matching

�

i

(i.e. to G), and without specifying that any particular node in G is unmatched.

The value f(c) is determined by the computation of M

�

on inputs x, �, c, and t (which codes

the answers to the previous queries to PIGEON). We have �xed x, part of � (i.e. part of G), and

the answers to previous queries, so f(c) depends only on the unspeci�ed part of G. Thus f(c) can

be expressed via a decision tree T

0

(c) whose vertices query the unspeci�ed part of G. Each internal

vertex of the tree T

0

(c) is labelled with a node u in G (representing a query) and each edge in T

0

(c)

leading from a vertex labelled u is labelled either with a node v in G (indicating that u is matched

to v in G) or ; (indicating that u is a lonely node in G). If u has already been matched in �

i

or if

10

u = 0:::0 then we know the answer to the query, so we assume that no such node u appears on the

tree, either as an edge label or vertex label. Also we assume that no node u occurs more than once

on a path, since this would give either inconsistent or redundant information. Each leaf of T

0

(c)

is labelled by the output string f(c) of M

�

under the computation determined by the path to the

leaf.

The runtime of M

�

is bounded by a polynomial in the lengths of its string inputs, which in

turn are bounded by a polynomial in n (since M is time-bounded by a polynomial in the length

n of its string input x). This runtime bound on M

�

, say k, bounds the height of each tree. If

n is su�ciently large, then the number of nodes in G minus the number of nodes in the partial

matching �

i

far exceeds k.

For each string c in the domain of f , de�ne T (c) to be the tree T

0

(c) where all branches with

outcome ; on any query are pruned. That is, we shall be interested in the behavior of this decision

tree when � evades the answer \lonely node".

Notice that each path from the root to a leaf in a tree T (c) designates a partial matching �

of up to k edges matching up to 2k nodes in G. Thus we call each tree T (c) a matching decision

tree. We call two partial matchings � and � compatible if �[� is also a partial matching, i.e. they

agree on the mates of all common nodes. Notice that the partial matching designated by any path

in T (c) is compatible with the original matching �

i

, since only nodes unmatched by �

i

can appear

as labels in T (c).

Case I: Some path p in a tree T (c) leads to a leaf labelled with the standard node 0...0,

indicating that f(c) = 0:::0. Then we set �

i+1

= �

i

[�, where � is the partial matching designated

by the path to this leaf. This insures that c is a legitimate answer to our current query to PIGEON ,

and we answer that query with c.

We say that a path p in tree T (c) is consistent with a path p

0

in T (c

0

) if p and p

0

designate

compatible matchings.

Case II: There are consistent paths p and p

0

in distinct trees T (c) and T (c

0

) such that p and p

0

have the same leaf label. Then we set �

i+1

= �

i

[� [�

0

, where � and �

0

are the partial matchings

designated by p and p

0

. This insures that f(c) = f(c

0

), so (c; c

0

) is a legitimate answer to our

current query to PIGEON , and we answer that query with (c; c

0

).

The lemma below insures that for su�ciently large n, either Case I or Case II must hold. Thus

we have described for all cases the partial matching �

i

associated with step i of M 's computation.

When M completes its computation after, say m steps, and outputs a node y in G, the partial

matching �

m

contains only polynomial in n edges, and whenever G extends this partial matching

and we answer queries to PIGEON as described, the computation of M will be determined and the

output will be y. In particular, we can choose a G consistent with �

m

in which y is not a lonely

node, so M makes a mistake. 2

Lemma 4: Suppose that the nodes comprising potential queries and answers in the matching

decision trees described above come from a set of size K, and each tree has height k. If K � 4k

2

,

then either Case I or Case II must hold.

Proof: Suppose to the contrary that neither Case I nor Case II holds. We think of the strings

in the domain of f as pigeons and the leaf labels as holes. If there are N possible pigeons 1,...,N

11

then we have N \pigeon" trees T

1

,...,T

N

and N � 1 possible holes 1,...,N � 1 (recall 0...0 is not a

possible leaf label). If the leaf label of path p in tree T

i

is j, then pigeon i gets mapped to hole j

under any partial matching consistent with p. All trees have height at most k.

We say that a path p extends a path p

0

if the partial matching designated by p extends the

partial matching designated by p

0

.

We will show how to construct a new collection of consistent \hole" matching decision trees

H

1

; :::;H

N�1

with possible leaf labels 1,...,N and \unmapped". Intuitively, the decision tree H

j

attempts to �nd a pigeon mapping to hole j or to prove that there is no such pigeon. Formally, H

j

will have the following properties: For any path p in H

j

with leaf label i, there is a (unique) path

p

0

in T

i

with leaf label j so that p extends p

0

. For any path p in H

j

with leaf label \unmapped",

p is inconsistent with any path in any T

i

with leaf label j. The construction is very similar to an

argument due to Riis [Rii93] which is itself similar to the proof that if a Boolean function and its

negation both can be written in disjunctive normal form with terms of size � d, then the function

has a Boolean decision tree of height � d

2

. (This last result was implicit in [HH87, HH91], [BI87],

[Tar89], and appears explicitly in [IN88].)

Fix j � N � 1 and let P

j

be the set of all paths in pigeon trees with leaf label j. Since Case II

does not hold, the paths in P

j

are mutually inconsistent. We describe H

j

implicitly as a strategy

for querying the purported matching �. The strategy proceeds in stages, and makes at most 2k

queries in each stage. Let �

s

represent the set of known edges of G at the beginning of stage s.

Then in stage s, if possible, we �nd a path p

s

in P

j

consistent with �

s

. If this is impossible, we

halt and output \unmapped". If we �nd a path p

s

, we query � for all endpoints of edges of G in

p

s

that are not contained in �

s

. We update �

s+1

to include the newly found edges. If �

s+1

includes

the edges of some path p with leaf label j from some T

i

0

, we halt and output i

0

; otherwise we begin

stage s+ 1.

From the above description, it is clear that when H

j

halts, the known edges either extend a

unique path p in one of the pigeon trees with leaf label j or are inconsistent with every such path.

Since each path in P

j

has at most k edges, at most 2k nodes are queried per stage. To see that

there are at most k stages before H

j

halts, we show by induction that in stage s every path p in P

j

consistent with �

s

has at least s edges in common with �

s

. After k stages any remaining consistent

path in P

j

must be entirely contained in �

k

in which case the algorithm halts.

To prove the claim, observe that for any stage s, any two paths in P

j

consistent with �

s

must

match some node not touched by �

s

since they are inconsistent with each other. In particular this

means that the set of endpoints of p

s

includes at least one node v

p

not touched by �

s

from each

path p in P

j

consistent with �

s

. Since �

s+1

contains an edge matching each endpoint of p

s

, any

path p in P

j

that remains consistent with �

s+1

will have the additional edge touching v

p

in common

with �

s+1

as required to show the claim.

Since there are at most k stages and at most 2k nodes are queried per stage, each path in tree

H

j

has length at most 2k

2

. We now extend all paths in H

j

by adding `dummy queries' so that each

path has length exactly 2k

2

. (The outcome of each dummy query is ignored, and the leaf label of

each extended path is the former label of its ancestor.)

Now get new pigeon trees T

0

i

by �rst simulating T

i

to get a path p in pigeon tree T

i

with leaf

label j and then simulating H

j

, but not asking queries already answered in p, i.e., restrict H

j

by

p. Along such a path, T

0

i

still outputs j. Note that any path q in H

j

which may be followed in this

12

manner must be consistent with p and thus it must extend some path in P

j

by the construction of

H

j

. Since the paths in P

j

are mutually inconsistent, q must extend p itself. This means that the

new path in T

0

i

constructed while following q gives rise to the same partial matching as q does.

Therefore any path p

0

with leaf label j in the pigeon tree T

0

i

has the exact same edges as a path

p with leaf label i in some hole tree H

j

. Thus all paths in both sets of trees have the same length,

2k

2

. Further, since no two paths in T

0

i

have the exact same edges, this de�nes a 1-1 mapping from

the paths of the T

0

i

's into the paths of the H

j

's. But this is impossible, because there is one more

pigeon tree than hole tree, and all trees with the same depth have the same number of paths. 2

From Theorems 1, 2 and 3 we conclude

Corollary 5: PPA

G

6� PPP

G

for any generic oracle G.

3.2 PPP

G

is not included in PPADS

G

Using the same technique, we can also show that PIGEON is not reducible to SINK. Now we

construct inputs (�; x) to PIGEON in such a way that each can be viewed as a mapping f from

[0; N] to [1; N] with the property that the mapping is one-to-one on all but one element of the

range. For each query to SINK, and for each node c in the directed graph D, the computation of

M

�

to determine �(c) can be expressed via a tree T (c) whose nodes query the function f . The

outcome of a query u is the unique element v such that f(u) = v. As in the previous proof, the

paths in T (c) describe partial matchings from [0; N] into [1; N]. (We are only interested in these

paths, since they are the ones that evade an answer to the PIGEON problem.)

The leaves of T (c) are labelled by the output ofM

�

. For vertex c, the notation fc

0

! c; c! c

00

g

means that there is an edge from c

0

to c, and an edge from c to c

00

in the underlying graph D.

Either c

0

or c

00

may have the value ;, indicating that c is a source, or respectively, sink vertex. Note

that because the standard node 0 is a source, all leaves of T (0) are labelled f; ! 0; 0! c

00

g. We

want to show that either the trees T (c) are inconsistent, or that there is some vertex c and some

path p in T (c) such that at the leaf label of path p, vertex c is designated as a sink.

For every vertex c, except for the standard source vertex, 0, we will make two copies of T (c);

the two copies will be identical except for the leaf labellings. If a path p in T (c) is labelled

fc

0

! c; c! c

00

g, then the path p in the \domain" copy of T (c), T

1

(c), will be labelled by c! c

00

,

and the path p in the \range" copy of T (c), T

2

(c), will be labelled by c

0

! c. For vertex 0, there is

only one copy, the \domain" copy. Thus, we have one more tree representing \domain" elements

than trees representing \range" elements. Assume for the sake of contradiction that all trees are

consistent, and that for every path in every domain tree, T

1

(c), the leaf label is c ! c

00

, for some

c

00

not equal to ;. As in the previous argument, we will extend the trees so that: each tree has the

same height k, and furthermore, there is a 1-1 mapping from paths in the domain trees to paths

in the range trees. This is done by �rst extending every path p in range tree T

2

(c) with leaf label

c

0

! c, c

0

6= ;, by the tree T

1

(c

0

) restricted by p. Then, all range trees are extended to the same

height by adding dummy queries. Finally, every path p in domain tree T

1

(c) with leaf label c! c

00

,

is extended by the tree T

1

(c

00

) restricted by p. But this violates the pigeonhole principle, because

there are more domain trees than range trees, and the total number of paths in every tree is the

same. Thus, the machine cannot solve PIGEON .

13

3.3 PPADS

G

is not included in PPA

G

In section 3.1 we reduced our separation problem to a purely combinatorial question, namely to

show that a family of matching decision trees with certain properties could not exist. In this section

we again reduce our problem to a similar combinatorial question with a somewhat di�erent kind

of decision tree. This question is more di�cult than our previous one and we need to apply a

new method of attack, introduced in [BIK

+

94], that is based on lower bounds on the degrees of

polynomials given by Hilbert's Nullstellensatz.

More precisely, we show how we can naturally associate an unsatis�able system of polynomial

equations fQ

i

(�x) = 0g over GF[2] with each family of decision trees with the speci�ed properties. By

Hilbert's Nullstellensatz, the unsatis�ability of these polynomial equations implies the existence of

polynomials P

i

over GF[2] such that

P

i

P

i

(�x)Q

i

(�x) = 1. However, our association shows something

stronger, namely that if the family of decision trees exists then these coe�cient polynomials must

also have very small degree (log

O(1)

n where n is the number of variables.)

Finally, in the technical heart of the argument, we show that for the family of polynomials we

derive, PHP

N+s

N

, any coe�cient polynomials allowing us to generate 1 require large degree, at least

n

1=4

. This is an interesting result in its own right since the bound for the coe�cients of the system

in [BIK

+

94] was only
(log

�

n). We give the proof of this result in the next section.

Theorem 6: SINK is not reducible to LONELY.

(As an illustration of the di�erence between many-one and strong reductions, the Appendix

contains a substantially simpler proof for the weaker separation that applies only to strong reduc-

tions.)

Proof: Suppose to the contrary that SINK � LONELY . We proceed as in the proof of Theorem 3,

except now the reducing machine M takes as input (�; x) which codes a directed graph G =

GD(�; n), where n = jxj, makes queries to the oracles � and LONELY and �nally outputs a sink

node in G. Our task this time is to �nd � and x and answers to the queries to LONELY so that

M 's output is incorrect.

We will need a couple of convenient bits of terminology. Recall that G is a directed graph

of maximum in-degree and out-degree at most 1. We will call such graphs 1-digraphs. A partial

1-digraph � over a node set V is a partial edge assignment over V . It speci�es a collection,

E = E(�), of edges over V , and a collection V

source

� V such that G(V;E) is a 1-digraph and for

v 2 V

source

= V

source

(�) there is no edge of the form u ! v in E. The set E indicates `included'

edges, the set V

source

indicates `excluded' edges. The size of a partial 1-digraph is jE [V

source

j.

Fix some large n and some x of length n. The nodes of G are the non-empty strings of length n

or less, and the edges of G are determined by the values of �(v) as before and �(0:::0) tells us that

0:::0 is a source. The computation is simulated as in the proof of Theorem 3 except that we build

a partial 1-digraph �

i

containing only a polynomial number of edges and we consider queries (�; z)

to LONELY . In this case we must return a lonely node, c, in the graph GM = GM(�; z) (c = 0:::0

if 0:::0 has a neighbor) where � is de�ned in the usual way by machine M

�

. We will show that a

possible value of c can be determined by adding only polynomially many edges to �

i

and without

specifying a sink node in G. Again, there is a natural notion of consistency that we can assume

holds without loss of generality.

14

We �rst obtain a collection of trees in a similar manner to that of the proof of Theorem 3. For

node c in graph GM , the computation of M

�

can be expressed as a function of the graph G via a

tree T (c) whose nodes query the graph G. Without loss of generality, G can be accessed via queries

of the form (pred; v), and (succ; v), where v is a node of G. The outcome of a query (pred; v) is

an ordered pair w ! v indicating that there is an edge in G from w to v; similarly the outcome of

a query (succ; v) is an ordered pair v ! w indicating that there is an edge in G from v to w. In

either case, w can be ;, indicating that u is a source in the �rst case, or a sink in the second case.

For a given query there is one outcome for each vertex w (or ;) except when such a label would

violate the rule that the edge labels on a branch, taken together, produce a 1-digraph. Each leaf in

the tree T (c) is labelled to indicate the output of M

�

, namely an unordered pair fc; c

0

g indicating

that node c is adjacent to node c

0

in the undirected graph GM , or ; indicating that c is lonely. The

height of each T (c) is bounded by the runtime of M

�

, say `

0

, which is in turn bounded by some

polynomial in n.

For each node c, we �rst prune the tree T (c) de�ned above by removing all branches with

outcome u ! ; on any query. That is, we restrict our interest to situations in which the oracle

� evades the answer \u is a sink vertex". The rest of the argument of this section shows that,

because of the consistency condition on M

�

, there is some node c such that tree T (c) must have a

leaf designating that c is a lonely node. This will complete the proof: Suppose there is some branch

� with leaf label ; in some tree T (c) with c 6= 0:::0. It follows that �

i+1

= �

i

[� forces c to be a

lonely node of GM . This allows us to �x the computation of the reduction in the i+1-st step and

by induction we can force the reduction to make an error as in the proof of Theorem 3.

We now argue by contradiction that such a branch must exist in some T (c) with c 6= 0:::0.

Assume that none of the leaves of T (c) for any c 6= 0:::0 have label ;. Let s = jV

source

(�

i

)j + 1.

(The 1 accounts for 0:::0.) Let N be the number of nodes in G minus the size of �

i

, minus s. Thus

there are N + s nodes that can appear in internal labels on the trees, s of which are guaranteed

to be sources. The set of edge labels along any branch of T (c) forms a partial 1-digraph of size at

most `

0

on these N + s nodes. Thus we call each such tree T (c) a 1-digraph decision tree. Let T

be the collection of trees T (c) for all nodes c in GM . We identify a branch in a 1-digraph decision

tree T with the partial 1-digraph determined by its edge labels and de�ne br(T) to be the set of

branches of T .

We call two partial 1-digraphs � and � compatible if � [� is also a partial 1-digraph. Notice

that since � is consistent, the collection T is also consistent: That is, if � is a branch of T (c) with

leaf label fc; c

0

g then all branches � in T (c

0

) that are compatible with � must have leaf label fc; c

0

g.

Given a consistent collection T , we can de�ne a new collection of 1-digraph decision trees

T

�

= fT

�

(c) j c 6= 0:::0g that satis�es an even stronger consistency condition:

For each node c, de�ne T

�

(c) to be the result of the following operation: For each c

0

and each

branch � of T (c) with leaf label fc; c

0

g append the tree T (c

0

) rooted at the leaf of � and simplify

the resulting tree. Remove all branches inconsistent with � and collapse any branches that are

consistent with �. (For example, if � contains the edge u ! v, and an internal node of T (c

0

)

is labelled with the query (succ; u) or (pred; v), then we replace that query node by the subtree

reached by the edge labelled u ! v.) Note that since the original collection T was consistent, all

new leaves added below a leaf labelled fc; c

0

g will be correctly labelled fc; c

0

g. Furthermore, if �

is a branch in T

�

(c) with leaf label fc; c

0

g, then � is also a branch in T

�

(c

0

) with leaf label fc; c

0

g.

15

Note that all the trees in T

�

now have height at most ` = 2`

0

and that M = jT

�

j is odd. Such a

collection T

�

is very similar to the generic systems considered in [BIK

+

94]. The rest of the proof

is devoted to showing that such a collection cannot exist.

Reducing the combinatorial problem to a degree lower bound

Given the partial 1-digraph �

i

, we can rename the nodes of the oracle graph G as follows: Remove

all cycles in E(�

i

) from G; remove all internal nodes on any path in E(�

i

) and identify the beginning

and end vertices of any such path; rename all source nodes as N + 1; : : : ; N + s with the standard

source as N +1; rename all remaining non-source nodes to 1; : : : ; N . We assume from now on that

the internal labels of the trees of T

�

have been renamed in this manner.

We will now show that if this collection of 1-digraph decision trees T

�

exists then there is a

particular unsatis�able system of polynomial equations whose Nullstellensatz witnessing polyno-

mials have small degree. This system is the natural expression of the sink counting principle for

1-digraphs that guarantees the totality of SINK.

Definition 3.1: Let S

N+s

N

be the following system of polynomial equations in variables x

i;j

with

i 2 [0; N + s], j 2 [1; N]:

(

X

j2[1;N]

x

i;j

)� 1 = 0

one for each i 2 [1; N + s], and

(

X

i2[0;N+s]

x

i;j

)� 1 = 0

one for each j 2 [1; N], and

x

i;j

� x

i;k

= 0

one for each i 2 [1; N + s], j 6= k, j; k 2 [1; N], and

x

i;k

� x

j;k

= 0

one for each i 6= j, i; j 2 [0; N + s], k 2 [1; N].

The variables x

i;j

describe a directed graph on vertices [1; N + s] with vertices [N + 1; N + s]

guaranteed to be source vertices. The variable x

i;j

, i 6= 0, describes whether or not there is an edge

from i to j. The variable x

0;k

indicates whether or not vertex k is a source vertex. A solution to

the above equations would imply that there is a 1-digraph with source vertices but no sink vertex.

Since this is impossible, there cannot exist a solution to S

N+s

N

.

Write S

N+s

N

= fQ

0

i

(�x) = 0g

i

. We call any expression of the form

P

i

P

0

i

(�x)Q

0

i

(�x) where the P

0

i

(�x)

are polynomials a linear combination of the Q

0

i

. The degree of such a linear combination is the

maximum of the degrees of the P

0

i

polynomials. (We say that the polynomial 0 has degree -1.) We

now show that if the collection T

�

exists then there is a linear combination of the Q

0

i

's over GF[2]

that equals 1 and has degree at most `� 1. (Such a result, without the degree bound, would follow

directly from Hilbert's Nullstellensatz.)

16

Given a partial 1-digraph � over [1; N + s] with [N +1; N + s] as source vertices, the monomial

X

�

= (

Y

i!j2E(�)

x

i;j

) � (

Y

j2V

source

(�)

x

0;j

)

is the natural translation of � into the polynomial realm (X

�

= 1 if � is empty.)

Lemma 7: Let T be a 1-digraph decision tree of height at most ` over [1; N+s] with [N+1; N+s]

as source vertices and suppose that 2` < N . Then the polynomial P

T

(�x) =

P

�2br(T)

X

�

� 1 can

be expressed as a linear combination of degree at most `� 1.

Proof: The proof proceeds by induction on the number of internal vertices of T . If T has no

internal vertices then it has one branch of height 0, P

T

(�x) = 0, and all coe�cient polynomials in

the linear combination are 0 which is of degree �1. Thus the lemma holds in this case.

Suppose now that T has at least one internal vertex and has height `. Then it has some internal

vertex v all of whose children are leaves. Let � be the partial 1-digraph that labels the path from

the root of the tree to v and let T

0

be the 1-digraph decision tree with the children of v removed

(the leaf label of v in T

0

will be immaterial.) Applying the inductive hypothesis to T

0

which has

one fewer internal vertex than T , we get that P

T

0

(�x) is some linear combination of the Q

0

i

of degree

at most `� 1.

The di�erence between P

T

(�x) and P

T

0

(�x) is that we have removed the monomial for the branch

� in T

0

and replaced it by the sum of the monomials for all branches in T extending �. Note also

that X

�

has degree at most the depth of v which is at most `� 1.

We have two cases to consider. If v is labelled with the query (pred; j) for some j 2 [1; N] then

j has no predecessors in E(�), j =2 V

source

(�), and

P

T

(�x) = P

T

0

(�x) +X

�

� (

X

i2f0g[S

x

i;j

� 1)

where S is the set of all i 2 [1; N + s] that have no successors in E(�). It is easy to see that for

any i 2 [1; N + s] n S, X

�

� x

i;j

is a multiple of some x

i;k

� x

i;j

(with k 6= j) of degree at most `� 2

so X

�

�

P

i2[1;N+s]nS

x

i;j

is a linear combination of degree at most `� 2. Then

X

�

� (

X

i2f0g[S

x

i;j

� 1)

= X

�

� (

X

i2[0;N+s]

x

i;j

� 1)�X

�

�

X

i2[1;N+s]nS

x

i;j

is a linear combination of degree at most `�1 since

P

i2[0;N+s]

x

i;j

�1 is one of the Q

0

polynomials.

Thus P

T

(�x) also is a linear combination of degree at most `� 1.

Similarly, if v is labelled with the query (succ; i) for some i 2 [1; N + s] then i has no successors

in E(�) and

P

T

(�x) = P

T

0

(�x) +X

�

(

X

j2S

0

x

i;j

� 1)

17

where S

0

is the set of all j 2 [1; N] that have no predecessors in E(�) and are not in V

source

(�).

Again X

�

�

P

j2[1;N]�S

0

x

i;j

is a linear combination of degree at most `� 2 and

X

�

� (

X

j2S

0

x

i;j

� 1) = X

�

� (

X

j2[1;N]

x

i;j

� 1)�X

�

�

X

j2[1;N]nS

0

x

i;j

is a linear combination of degree at most `� 1 since

P

j2[1;N]

x

i;j

� 1 is one of the Q

0

polynomials.

Again it follows that P

T

(�x) is a linear combination of degree at most `� 1.

The lemma follows by induction. 2

Lemma 8: Suppose that T

�

exists as de�ned above. Then

P

T2T

�

P

�2br(T)

X

�

= 0 over GF[2].

Proof: Thus over GF[2] the sum is 0. 2

Lemma 9: If T

�

exists as de�ned above then, over GF[2], there are P

0

i

(�x) of degree at most `� 1

such that

P

i

P

0

i

(�x)Q

0

i

(�x) = 1.

Proof: De�ning P

T

(�x) as in the statement of Lemma 7 we have

X

T2T

�

P

T

(�x) =

X

T2T

�

(

X

�2br(T)

X

�

� 1)

= (

X

T2T

�

X

�2br(T)

X

�

)� jT

�

j

= (

X

T2T

�

X

�2br(T)

X

�

) + 1

over GF[2] since jT

�

j is odd.

Now by the de�nition of T

�

, for T = T

�

(c) 2 T

�

any � 2 br(T) has some leaf label fc; c

0

g such

that we also have � 2 br(T

�

(c

0

)) with leaf label fc; c

0

g. This association pairs two copies of every

branch in T

�

so every X

�

appears an even number of times in

P

T2T

�

P

�2br(T)

X

�

. Therefore this

sum equals 0 over GF[2] and thus

P

T2T

�

P

T

(�x) = 1 over GF[2].

By Lemma 7,

P

T2T

�

P

T

(�x) is a linear combination of degree at most `� 1 and we obtain our

desired result. 2

It remains to show that there cannot exist small degree P

0

i

such that

P

i

P

0

i

Q

0

i

= 1 over GF[2].

We �rst argue that there is a simpler subset of the equations in S

N+s

N

, PHP

N+s

N

= fQ

i

(�x) = 0g,

such that for any d � 1, any linear combination of the Q

0

i

of degree at most d that equals 1 can be

transformed into a linear combination of the Q

i

of degree at most d that equals 1. We then argue

our degree lower bound in terms of the Q

i

. The equations in PHP

N+s

N

are the natural encoding

of the the pigeonhole principle stating that there is no function from a set of size N + s to a set of

size N .

Definition 3.2: PHP

N+s

N

is the following system of polynomial equations in variables x

i;j

with

i 2 [1; N + s], j 2 [1; N]:

(

X

j2[1;N]

x

i;j

)� 1 = 0

18

one for each i 2 [1; N + s], and

x

i;j

� x

i;k

= 0

one for each i 2 [1; N + s], j 6= k, j; k 2 [1; N], and

x

i;k

� x

j;k

= 0

one for each i 6= j, i; j 2 [1; N + s], k 2 [1; N].

Lemma 10: Write S

N+s

N

= fQ

0

i

(�x) = 0g and PHP

N+s

N

= fQ

i

(�x) = 0g. For any d � 1, there is

a linear combination of the Q

0

i

of degree at most d that equals 1 if and only if there is a linear

combination of the Q

i

of degree at most d that equals 1.

Proof: One direction is immediate. For the other direction, assume there exist polynomials

P

0

i

of degree at most d � 1 such that

P

i

P

0

i

(�x)Q

0

i

(�x) = 1. Now apply the substitution x

0;i

=

1� (x

1;i

+ :::x

N+s;i

) to this linear combination. First notice that it doesn't change the degree of any

coe�cient monomials. There are two types of polynomials among the Q

0

i

that are not explicitly

present among the Q

i

: The �rst type is any 'range polynomial', i.e., x

0;i

+ x

1;i

+ ::: + x

N+s;i

� 1.

But this becomes 0 under the substitution. The second type is of the form x

0;i

� x

k;i

, for k > 0.

However, under the substitution, the resulting combination is of degree 1 over the reduced system:

[1 � (x

1;i

+ ::: + x

N+s;i

)] � x

k;i

is equal to x

k;i

� x

2

k;i

plus a degree 0 combination of x

j;i

� x

k;i

for

0 < j 6= k. Now x

k;i

�x

2

k;i

is a degree 1 combination of the domain polynomial for k in the reduced

system and some of the other polynomials since �x

k;i

(x

k;1

+ x

k;2

+ :::+ x

k;n

� 1) equals x

k;i

� x

2

k;i

plus a degree 0 combination of x

k;j

� x

k;i

for j 6= i. Thus the degree of the combination in the

reduced system is at most d. 2

By Theorem 12 proven in the next section we can now complete the proof of Theorem 6.

Combining Theorem 12 with Lemma 9 and Lemma 10 we have that the existence of T

�

implies

that ` �

p

2N . However, ` is also polynomial in n < logN which contradicts ` �

p

2N for n

su�ciently large. Thus the collection T

�

as de�ned above cannot exist.

2

Corollary 11: PPADS

G

6� PPA

G

for any generic oracle G.

4 A Nullstellensatz degree lower bound for PHP

N+s

N

In this section we prove the following theorem which is of independent interest.

Theorem 12: Write PHP

N+s

N

= fQ

i

(�x) = 0g. Over GF[2], if

P

i

P

i

(�x)Q

i

(�x) = 1 for polynomials

P

i

then one of them must have degree at least

p

2N � 1.

Let P

i

(�x) be polynomials over GF[2] of degree at most d. We consider the class of assignments

to the variables �x that correspond to bi-partite matchings in U

N+s

N

= [1; N+s]�[1; N], and examine

the behavior of

P

i

P

i

(�x)Q

i

(�x) under such assignments.

19

Given a bi-partite matching M = fhi

1

; j

1

i; : : : ; hi

m

; j

m

ig � U

N+s

N

we naturally obtain the

monomial X

M

=

Q

hi;ji2M

x

i;j

as well as the assignment such that x

i;j

 1 if and only if hi; ji 2

M . (If M = ; then X

M

= 1.) Any monomial that is not of the form X

M

for some bi-partite

matching M will be 0 under all assignments we consider so we ignore such terms without loss of

generality. In particular, we will not need to consider the Q

j

that give the degree 2 equations

in PHP

N+s

N

. Therefore, we can assume that we have the polynomial

P

N+s

i=1

P

i

(�x)Q

i

(�x) where

Q

i

(�x) =

P

N

j=1

x

i;j

� 1 and all monomials not of the form X

M

for some matching M have been

removed. Let the coe�cient in P

i

of the monomial X

M

corresponding to matching M be a

i

M

.

Definition 4.1: Matching M matches i if hi; ji 2 M for some j 2 [1; N]. We write this formally

as i 2 M . If i 2 M , we write M � i for the matching M � fhi; jig where j is the unique value

such that hi; ji 2M . Let dom(M) = fi 2 [1; N + s] j i 2Mg be the projection of M onto the �rst

co-ordinate.

Since we only consider assignments over GF[2], we can assume that a

i

M

= 0 if i 2 M . The

reason is that if M = fhi; kig [(M � i), then X

M

= X

M�i

� x

i;k

and

X

M

�Q

i

= X

M�i

� x

i;k

� (

X

j2[1;N]

x

i;j

� 1)

= X

M�i

� (x

2

i;k

� x

i;k

) = 0

since x

2

� x = 0 for all x 2 GF[2].

By considering assignments corresponding to each bipartite matching M of size up to d+ 1 in

turn, we inductively obtain an equation over GF[2] for the coe�cient of X

M

in

P

N+s

i=1

P

i

� Q

i

so

that the combination equals 1 over GF[2]:

(1) �

P

i2[1;N+s]

a

i

;

= 1

(2)

P

i2M

a

i

M�i

�

P

i 62M

a

i

M

= 0, for all matchings M 6= ; on U

N+s

N

with jM j � d

(3)

P

i2M

a

i

M�i

= 0, for all matchings M on U

N+s

N

with jM j = d+ 1.

We will now show that the above system of equations (1){(3) has a solution over GF[2] if and

only if there does not exist a particular combinatorial design.

Definition 4.2: LetM be a collection of matchings on U

N+s

N

so that all matchingsM 2M match

i 2 [1; N + s]. De�neM� i to be the set of matchings

L

M2M

fM � ig where

L

operates like [

except that it only includes elements that appear in an odd number of its arguments.

Definition 4.3: A k-design for (1){(3) is a collection of matchings, M, on U

N+s

N

such that each

matching inM has size at most k and such that the following conditions hold.

(a) The empty matching M = ; is inM.

(b) The setsM

S

= fM 2M j dom(M) = Sg for S � [1; N+s], jSj � k, satisfyM

S�fig

=M

S

�i.

20

Lemma 13: Equations (1){(3) have a solution over GF[2] if and only if there does not exist a

(d+ 1)-design for (1){(3).

Proof: We give the proof of the above lemma in the direction that we will need, although using

basic linear algebra the converse direction can also be proven.

Suppose we have a (d+ 1)-designM for (1){(3) and a solution for equations (1){(3). We view

the matchings M 2M as selecting a subset of the equations in (1){(3), since there is one equation

for each matching on U

N+s

N

of size at most d + 1. We consider the GF[2] sum of the selected

equations. Condition (a) in the de�nition of a (d+ 1)-design requires that equation (1) is selected

so the right-hand side of the sum is 1.

We will show that condition (b) in the de�nition of a (d+ 1)-design implies that the left-hand

side of this sum is 0 which is a contradiction. Consider the coe�cient of a

i

M

in the sum. It occurs

once (with coe�cient �1) if M 2 M. It also occurs once (with coe�cient +1) for each j such

that M [fhi; jig 2 M. We rewrite this in terms of S = dom(M): There is a contribution of �1 if

M 2M

S

and a contribution of +1 if there are an odd number of j such thatM [fhi; jig 2 M

S[fig

.

The latter is true if and only ifM 2M

S[fig

�i. By condition (b) of the de�nition of a (d+1)-design,

M

S

=M

S[fig

� i so the net coe�cient of a

M

i

is 0. 2

We now state the conditions under which we can produce designs.

Theorem 14: For any d such that N �

�

d+2

2

�

there exists a (d+ 1)-design for (1){(3).

By Theorem 14 if N �

�

d+2

2

�

= (d + 1)(d + 2)=2, there is a (d+ 1)-design for (1){(3) and thus

by Lemma 13 there is no solution to equations (1){(3) and no polynomials P

i

of degree d such that

P

i

P

i

�Q

i

= 1. This proves Theorem 12. 2

The proof of Theorem 14 occupies the remainder of this section.

Definition 4.4: Let [N]

(k)

� [N]

k

denote the set of k-tuples from [1; N] that do not contain

any repeated elements. For any set S � [1; N + s], we can de�ne a set of matchings M

S

by

giving an associated set V

S

� [N]

(jSj)

with the interpretation that if S = fi

1

; : : : ; i

jSj

g where

i

1

< i

2

< � � � < i

jSj

then

M

S

= f(hi

1

; j

1

i; : : : ; hi

jSj

; j

jSj

i) j (j

1

; j

2

; : : : ; j

S

) 2 V

S

g

We use the notationM

S

=M(S;V

S

).

The design that we produce will be symmetric in the following sense. For any two sets S; S

0

�

[1; N + s] with jSj = jS

0

j we will have V

S

= V

S

0

. We will use the notation V

k

to denote V

S

for

jSj = k. In order to describe our design it will be convenient to de�ne the following somewhat

bizarre operation.

Definition 4.5: Let v 2 [N]

(k)

and I � [1; k], I = fi

1

; : : : i

jIj

g such that i

1

< i

2

< : : : < i

jIj

. Let

A � [N]

(jIj)

be such that no element of v appears in any element of A. De�ne

v

N

I

A = fx 2 [N]

(k)

j 9w 2 A:8j � jIj: x

i

j

= w

j

and 8i 2 [1; k]� I: x

i

= v

i

g

21

This operation creates the set of tuples made by `spreading out' some tuple in A into the

positions indexed by I and �lling the remaining positions with the corresponding entries from v.

Note that if I = ; then v

N

I

A = fvg and if I = [1; k] then v

N

I

A = A.

Definition 4.6: Let V

0

= f()g, the set containing the empty tuple. For k > 0 let v

k

= (

�

k

2

�

+

1; : : : ;

�

k+1

2

�

) and de�ne

V

k

=

[

I�[1;k]

v

k

N

I

V

jIj

In order to understand this de�nition it will be convenient to represent each set V

k

as an array,

each of whose columns is a tuple in V

k

, and listed so that the columns are in order of decreasing

size of the set I used in their construction. Using this representation, we have

V

0

= ()

V

1

= (1)

V

2

=

2 1 2

1 3 3

!

V

3

=

0

B

@

4 4 4 2 1 2 2 1 2 4 4 1 4

2 1 2 5 5 5 1 3 3 5 1 5 5

1 3 3 1 3 3 6 6 6 1 6 6 6

1

C

A

and so on.

Definition 4.7: Let A � [N]

(k)

and 1 � i � k. We de�ne A� i to be the projection of A onto the

k � 1 co-ordinates other than i where we cancel repeated tuples in pairs. That is

A� i = f(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

k

) 2 [N]

(k�1)

j

#fy 2 A : 8j 6= i: y

j

= x

j

g is oddg

By the de�nition, if A is the disjoint union of sets A

1

; : : : ; A

r

then A� i =

L

r

j=1

(A

j

� i).

The following is the key property of the sets V

k

.

Lemma 15: For k � 1 and any i 2 [1; k], V

k

� i = V

k�1

.

Proof: The proof is by induction on k. For the base case, V

1

= (1) so V

1

� 1 is f()g which equals

V

0

.

Now suppose that V

l

� i = V

l�1

for all 1 � l < k and i 2 [1; l]. Consider V

k

� i where i 2 [1; k].

It is clear that the union in the de�nition of V

k

is a disjoint union so

V

k

� i =

L

I�[1;k]

[(v

k

N

I

V

jIj

)� i] (1)

Claim: Suppose that i =2 I and I [fig � [1; k]. Then (v

k

N

I

V

jIj

)� i = (v

k

N

I[fig

V

jIj+1

)� i

22

Before proving the claim we �rst see that it is su�cient to complete the induction. Consider

the natural pairing between the subsets I � [1; k] that do not contain i and those subsets that do

contain i, namely I is paired with I [fig. Equation (1) has terms for both elements of every pair

except for the pair with I = [1; k] � fig since there is no term for I = [1; k]. By the claim, the

contributions to V

k

� i from the elements of any of these pairs cancel each other out so we have

V

k

� i = (v

k

N

[1;k]�fig

V

k�1

)� i = V

k�1

which is what we needed to show.

Now to prove the claim, de�ne v

i

k

to be v

k

with its i-th component removed. Also, for i =2 I,

de�ne

Ij

i

= fj j j 2 I; j < ig [fj � 1 j j 2 I; j > ig:

Since i =2 I, by the de�nition of

N

I

we have (v

k

N

I

V

jIj

) � i = v

i

k

N

Ij

i

V

jIj

because all tuples in

v

k

N

I

V

jIj

have the same i-th component, namely the i-th component of v

k

. On the other hand,

by the de�nition of

N

I[fig

we have (v

k

N

I[fig

V

jIj+1

)� i = v

i

k

N

Ij

i

(V

jIj+1

� j) where i is the j-th

element of I [fig. This follows because we are �rst inserting the j-th component of each tuple

in V

jIj+1

into the i-th component of our new tuples (ignoring the i-th component of v

k

) and then

removing that i-th component. (All duplicates created in this process must be from tuples in V

jIj+1

that disagree on the j-th component but agree everywhere else.)

Since i =2 I and I [fig � [1; k], we have jIj + 1 < k. Therefore, by the inductive hypothesis,

V

jIj+1

� j = V

jIj

and thus

(v

k

N

I[fig

V

jIj+1

)� i = v

i

k

N

Ij

i

(V

jIj+1

� j)

= v

i

k

N

Ij

i

V

jIj

= (v

k

N

I

V

jIj

)� i

which proves the claim. 2

Lemma 16: Assume that N �

�

d+2

2

�

. For every S � [N + s] with jSj � d + 1, de�ne M

S

=

M(S;V

jSj

). ThenM = [

S

M

S

is a (d+ 1)-design for (1){(3).

Proof: We �rst observe that for any k, V

k

contains entries from [1;

�

k+1

2

�

] so N �

�

d+2

2

�

implies

that V

k

is well de�ned for k � d+ 1.

For condition (a) of the de�nition of a (d+1)-design for (1){(3), observe thatM

;

=M(;;V

0

) =

M(;; f()g) = f;g, where ; is the empty matching and so ; 2 M.

Let S � [N + s], jSj � d + 1 and i 2 S. Write S = fi

1

; : : : ; i

k

g for k � d + 1, where

i

i

< i

2

< � � � < i

k

and suppose that i = i

j

. Interpreting the de�nitions and applying Lemma 15 we

have,

M

S

� i = M(S;V

k

)� i = M(S � fig;V

k

� j)

= M(S � fig;V

k�1

) = M

S�fig

where the second equality follows because both the de�nitions M� i and V � j use the same

L

operator. Thus condition (b) of the de�nition of a (d+1)-design holds and the lemma follows. 2

This proves Theorem 14.

23

5 Search vs decision

We now show that our focus on search problems as opposed to decision problems is necessary.

We say that two problems are computationally equivalent if each is reducible to the other. It is

well-known that the problem SAT-SEARCH (�nd a satisfying assignment to a set of clauses, if one

exists) is computationally equivalent to the decision problem SAT (determine whether a given set

of clauses has a satisfying assignment).

Although a total search problem does not always have an obvious decision problem equivalent

to it, nevertheless every single-valued total NP search problem is computationally equivalent to

the decision problem \is the i-th bit of the unique answer equal to one?". An interesting example

comes from the Fellows and Koblitz paper [FK92], which shows how to provide every prime number

with a unique certi�cate that can be used to verify in polynomial-time that the number is prime.

(The certi�cates provided by Pratt [Pra75] are not unique.) The single-valued NP search problem

coming from Fellows and Koblitz is: Given a number m, list its prime divisors in order, together

with their unique certi�cates.

The theorem below shows that none of the type 2 search problems introduced in Section 2 is

computationally equivalent to any decision problem. In fact, from the proof, one can see this will

be true for basically any non-trivial problem in TFNP

2

. It follows that the same will be true relative

to a generic oracle for any complete problem for the corresponding search classes.

Theorem 17: None of the problems SOURCE.OR.SINK, SINK, LEAF, or PIGEON is polynomial-

time Turing equivalent to any decision problem.

Proof: De�ne NP

2

and coNP

2

to be the type 2 analogs of NP and coNP (in the same way that

FNP

2

is the type 2 analog of FNP.) It is easy to see that if a decision problem D is polynomial-time

Turing reducible to some Q in TFNP

2

then one can guess and verify answers to the oracle queries

to Q made by the reducing machine, so D is in NP

2

\ coNP

2

. Therefore, to show that a problem

in TFNP

2

is not equivalent to any decision problem, it su�ces to show that it is not reducible to a

problem in NP

2

\ coNP

2

.

Lemma 18: None of the problems SOURCE.OR.SINK, SINK, LEAF, or PIGEON is polynomial-

time Turing reducible to any decision problem in NP

2

\ coNP

2

.

Since SOURCE.OR.SINK reduces to all of the other problems mentioned in the statement of the

theorem, it su�ces to show this for SOURCE.OR.SINK. A slightly weaker version of the following

proposition is implicit in [HH87], [BI87], [Tar89]; the proposition as stated is implicit in [IN88]:

Proposition 19: NP

2

\ coNP

2

� (P

2

)

TFNP

Thus, if SOURCE.OR.SINK were reducible to a problem in NP

2

\coNP

2

, it would be in (FP

2

)

A

for some type 1 oracle A (moreover, A could be a search problem in TFNP, but this is not important

for the argument.) Thus, there would be a polynomial time oracle machine which asks queries to

A and to the underlying directed graph and which returns a source or a sink other than 0 of the

24

directed graph. This machine would yield a decision tree making predecessor/successor queries of

depth poly-logarithmic in the number of nodes in the directed graph, which �nds a source or a sink

of the graph. For su�ciently large sizes of n, the number of queries asked is smaller than 2

n�1

� 2,

and each query �xes the predecessor or successor of at most 2 nodes. Thus, any consistent path in

this tree leaves at least 3 nodes whose predecessors and successors are not yet �xed. If the path

produces a node c as output, two of these three nodes (removing c if c is one of the three) can

be used to consistently de�ne the value of c's predecessor and/or successor, if they have not been

�xed by the path. Thus, there is a graph consistent with p where c is neither a source nor a sink,

a contradiction to the assumed correctness of the decision tree. 2

The above argument holds for any problem in TFNP

2

that does not have a poly-logarithmic

depth decision tree that solves it. The above outline was used in the proof of [IN88] (Proposition

4.2) which shows that for a generic oracle G, TFNP

G

is not contained in FP

G

. There, the problem

in TFNP

2

without poly-log depth decision trees was to �nd either a logarithmic-size clique or anti-

clique in an undirected graph given as the type 2 input, the existence of a solution being guaranteed

by Ramsey's Theorem.

Acknowledgements

The authors would like to thank Christos Papadimitriou for sharing his insights on these problems

and for a number of discussions that led to this work, and Steven Rudich for helpful discussions.

References

[BI87] Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes. In 28th

Annual Symposium on Foundations of Computer Science, pages 118{126, Los Angeles,

CA, October 1987. IEEE.

[BIK

+

94] Paul W. Beame, Russell Impagliazzo, Jan Kraj���cek, Toniann Pitassi, and Pavel Pudl�ak.

Lower bounds on Hilbert's Nullstellensatz and propositional proofs. In Proceedings 35th

Annual Symposium on Foundations of Computer Science, pages 794{806, Santa Fe, NM,

November 1994. IEEE.

[CIY97] S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight relationship between generic

oracles and type-2 complexity theory. Information and Computation, 136, 1997. To

appear.

[FK92] M. Fellows and N Koblitz. Self-witnessing polynomial-time complexity and prime fac-

torization. In Proceedings, Structure in Complexity Theory, Seventh Annual Conference,

pages 107{110, Boston, M A, June 1992. IEEE.

[HH87] Juris Hartmanis and Lane A. Hemachandra. One-way functions, robustness, and non-

isomorphism of NP-complete sets. In Proceedings, Structure in Complexity Theory, Sec-

ond Annual Conference, pages 160{174, Cornell University, Ithaca, NY, June 1987. IEEE.

25

[HH91] J. Hartmanis and L. Hemachandra. One-way functions, robustness, and non-isomorphism

of NP-complete sets. Theoretical Computer Science, 81:155{163, 1991.

[IN88] R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proceedings,

Structure in Complexity Theory, Third Annual Conference, pages 29{38, Washingto n,

D.C., June 1988. IEEE.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local

search? Journal of Computer and System Sciences, 37(1):79{100, 1988.

[Pap90] Christos H. Papadimitriou. On graph-theoretic lemmata and complexity classes. In

Proceedings 31st Annual Symposium on Foundations of Computer Science, pages 794{

801, St. Louis, MO, October 1990.

[Pap91] Christos H. Papadimitriou. On ine�cient proofs of existence and complexity classes. In

Proceedings of the 4th Czechoslovakian Symposium on Combinatorics, 1991.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other inef-

�cient proofs of existence. Journal of Computer and System Sciences, pages 498{532,

1994.

[Pra75] Vaughan R. Pratt. Every prime has a succinct certi�cate. SIAM Journal on Computing,

4:214{220, 1975.

[PSY90] Christos H. Papadimitriou, Alejandro A. Sch�a�er, and Mihalis Yannakakis. On the com-

plexity of local search. In Proceedings of the Twenty-Second Annual ACM Symposium on

Theory of Computing, pages 438{445, Baltimore, MD, May 1990. (Extended Abstract).

[Rii93] S�ren Riis. Independence in Bounded Arithmetic. PhD thesis, Oxford University, 1993.

[Tar89] G. Tardos. Query complexity, or why is it di�cult to separate NP

A

T

coNP

A

by a

random oracle A? Combinatorica, 9:385{392, 1989.

[Tow90] M. Townsend. Complexity of type-2 relations. Notre Dame J. Formal Logic, 31:241{262,

1990.

Appendix: A Weak Separation

Theorem 6, showing that SINK is not reducible to LONELY (equivalently, not to LEAF) has a

di�cult proof involving the Nullstellensatz degree bound. Here we present a simpler proof, based

on a probabilistic argument, of a weaker result which applies only to \strong" reductions.

We say that problem Q

1

is strongly reducible to problem Q

2

if there exist type 2 polynomial-time

computable functions F and G such that Q

2

(G[�; x]; F (�; x)) � Q

1

(�; x), for all � and x, where

G[�; x] = �z:G(�; x; z). This is the same as the de�nition of many-one reducibility given in section

2.2, with the restriction that the function H, which maps solutions for Q

2

to solutions for Q

1

, is

required to be trivial (i.e. H(�; x; y) � y). All of the many-one reductions given in sections 2.4

and 2.5 are in fact strong reductions. The proof techniques below could easily be strengthened to

26

apply to the case of many-one reductions in which H satis�es the restriction that for all �, x, and

z, at most polynomially many (in jxj) di�erent strings y satisfy H(�; x; y) = z.

Theorem 20: SINK is not strongly reducible to LEAF.

Proof: Suppose to the contrary that SINK is strongly reducible to LEAF using functions F

and G

0

. We proceed as in the proof of Theorem 3, except now the reducing machine M has a very

simple form. It takes (�; x) coding a directed graph GD as input, makes a single query to LEAF

�

,

and the query answer must be a sink in GD. (The last is because we only consider input graphs

GD in which the nonstandard node 0...0 is a source.) The query is made to LEAF

�

= LEAF(�; z),

where (�; z) describes (using functions F and G

0

) an undirected graph G of maximum degree 2.

Since only a single query is made, we can ignore z and assume that � is computed by a polynomial

time machine M

�

with inputs �, x, and c, where c is a node in G. As before, we �x a long string

x, and represent the computation of M

�

on input c by a decision tree T (c) whose nodes query the

input graph GD. The outcome of each query of node u is the ordered pair < v;w >, indicating

that there is an edge in GD from v to u and one from u to w. Here either v or w can be empty, in

case u is a source or sink. Each leaf in the tree T (c) is labelled with the information coded by the

output of M

�

, namely an unordered pair fc

0

; c

00

g of con�gurations indicating that c

0

and c

00

are the

neighbors of c in G. Once again, either or both of c

0

and c

00

can be empty.

We now describe a random process for constructing three instances of the input graph GD,

denoted GD

0

, GD

1

, and GD

2

(see Figure 5). We denote the standard source 0...0 in GD by 0.

(1) Pick �ve random distinct nodes r, r

0

, s, t, t

0

, all distinct from the standard node 0, and let

GD

1

consist of a random chain (uniformly distributed) from 0 to s, subject to the constraints

that r

0

is the successor of r, t

0

is the successor of t, and r

0

precedes t. That is GD

1

has the

form: hw

0;r

; w

r

0

;t

; w

t

0

;s

i, where w

i;j

is a chain of nodes beginning with i and ending with j.

(2) Let GD

2

consist of GD

1

with the second and third segments transposed, as shown in Figure 5,

so that GD

2

is a chain from 0 to t. That is, GD

2

has the form: hw

0;r

; w

t

0

;s

; w

r

0

;t

i.

(3) If the path determined by GD

1

in the tree T (s) queries any of the nodes r, r

0

, t, t

0

, then

FAIL.

(4) If the path determined by GD

2

in the tree T (t) queries any of the nodes r, r

0

,s, t

0

, then FAIL.

(5) LetGD

0

consist of segments ofGD

1

rearranged into two chains, with sinks s and t respectively,

where the �rst chain is hw

0;r

; w

t

0

;s

i, and the second chain is hw

r

0

;t

i. See Figure 5.

Let G

0

, G

1

, and G

2

denote the undirected graphs corresponding to GD

0

, GD

1

, and GD

2

,

respectively. The neighbors of a node c in G

i

are described by the decision tree T (c). Since s is the

only sink of GD

1

and t is the only sink of GD

2

, s must be a leaf in G

1

and t must be a leaf of G

2

,

by correctness of the reduction. If the process above survives steps (3) and (4), then both of the

trees T (s) and T (t) follow the same paths under GD

0

as they did before respectively under GD

1

and GD

2

, so both s and t are leaves of G

0

. Since 0 is also a leaf of G

0

, it follows that G

0

must

have a fourth leaf, which is not a sink of GD

0

, so the reduction is incorrect. Hence we are done if

we can argue that the probability of failure in steps (3) and (4) is small.

27

r’ t

0 r t’ s

0 r t’ s r’ t

0 r r’ t t’ s
GD

GD

GD

1

2

0

Figure 5: Oracle graphs GD

1

, GD

2

, and GD

0

To argue the case for (3), note that an equivalent process modelling (3) would be to choose s

at random and a random chain from 0 to s. This determines a path p in T (s). Now choose r and t

at random, let r

0

and t

0

be their successors, and FAIL if the path p queries any of these four nodes.

Since p queries only a tiny fraction of the 2

n

possible nodes, the probability of failure is tiny.

The probability of failure in (4) is exactly the same as in (3). This is because there is an

obvious one-one correspondence (namely transpose segments) between chains and nodes generated

according to the process for GD

1

and chains and nodes generated according to the process for GD

2

.

The process preserves the failure set. 2

28

