
Chapter 22

Introduction to Probability Theory

Probability theory is a means of calculating the likelihood of different events occurring when
conducting some well-defined experiment.

Experiments: An experiment might be as simple as flipping a coin and observing whether
the event heads or the event tails occurs. It might consist of buying a lottery ticket
and observing how much money is gained or lost. It might also consist of executing
a randomized algorithm on a given input instance and observing how long it executes
and whether it gives the correct output.

Probability of an Event: The probability of event A is a real number p = Pr[A] ∈ [0, 1]
that measures the fraction of times that the event occurs.

Definition: There are two ways of defining this probability: either by repeating the
experiment or by looking into how the experiment works. Either way, it involves
counting.

1) Running Many Times: If you repeat the experiment “independently” an
infinite number of times N , then the probability of an event p is defined to
be the fraction of those times in which the event occurs, that is, pN times
out of the N trials.

p = Pr[A] = lim
N→∞

The # of times event A occurs in N trials

N

2) Inner Workings: If we count all possible outcomes r of an experiment where
each outcome is equally likely to occur, the probability p of event A can then
be defined to be

p = Pr[A] =
The # of r for which event A occurs

The # of r

Underlying Coin Flips: Suppose, for example, that the randomness for
the experiment comes from flipping a fair coin a fixed number of times.
Then, r might be 〈heads, tails, heads, heads, . . . , tails〉.

1

Random Real in [0, 1]: Computers cannot actually flip coins. Instead, your pro-
gram can call a system routine which tries to return some thing that is pseudo
random. A common routine rand returns a random real value x between zero
and one. You can use this to simulate other random distributions. For example,
you can simulate a 6-sided die as follows. If x ∈ [0, 1

6
) pretend that you rolled a

one. If x ∈ [1
6
, 2
6
), pretend you rolled a two and so on. This works because for any

0 ≤ a ≤ b ≤ 1, Pr [x ∈ [a, b]] = b− a.

Examples:

Coin Flip: Given this definition, it is easy to see that the probability of the event
heads when flipping a coin is p = 1

2
.

Dying: To help get perspective on the probability p = 1
10,000,000

, it is approx-
imately the probability of dying in the next five minutes, because people
generally live at most 90 years which is 90 ·365 ·24 ·60/5 ≈ 10, 000, 000 blocks
of 5 minutes and we approximate that you die in a random one of these.

Probability of x successes: Let Px denote the probability that there are ex-
actly x successes when running n independent experiments each with success
probability p.

Px =

(
n

x

)
px(1−p)n−x =

n!

x! (n− x)!
px(1−p)n−x.

This is because there are
(
n
x

)
ways of “choosing” x of the n experiments to be

the ones that will succeed. For each of these ways of choosing, the probability
that the x chosen experiments succeed is px and the probability that the n−x
experiments not chosen fail is (1−p)n−x.

Venn Diagrams: A useful way to visualize probabilities is with Venn Diagrams.
Draw a square with area one. Let each point in it represent one outcome
r = 〈heads, tails, heads, heads, . . . , tails〉 of the coin flips. For each event, cir-
cle those outcomes that lead to the event occurring. The area of the circled
region is the probability of the event. For example, Figure 22.1.1 represents the
fact that event A occurs with probability p = 1

3
and fails to occur with probability

1−p = 2
3
.

Dependencies Between Events: When you have more than one event, the dependencies
between them can be complicated.

Venn Diagrams: Venn diagrams are useful for visualizing these dependencies. Fig-
ure 22.1.2 represents the event when both event A and event B both occur simul-
taneously, when only one or the other occurs, and when neither occurs.

Probability of A given B: The probability of an event A is also related to the ex-
tent of our knowledge about whether the event will occur. If all coin flip outcomes
r are equally likely, then Pr[A] tells us the likelihood of event A happening. But

2

AA
BA

A and B
A and
not B

B and
not A

not A and not B

V=3
U=6

V=8
U=4

V=1
U=3

U=2
V=5

A’

A’’

B

A

0 1/3 1

Figure 22.1: The four Venn diagrams. The first shows that the probability of event A is
p = 1

3
. The second shows the probability of events A and B happening simultaneously, the

probability of only one or the other occurring, and neither occurring. The third demonstrates
events A and B being independent, positively dependent, or negatively dependent. The last
shows a random variable V with Pr[V = 5] = 1

9
.

suppose now, that we knew that event B happened. This narrows the possi-
ble coin flip outcomes r to only those for which B occurs. See the B circle in
Figure 22.1.2. Given this, the fraction of times that A will be happen is

Pr[A|B] =
The # of r for which both A and B occur

The # of r for which event B occurs

=
Pr[A and B]

Pr[B]

Independence and Dependence: Events can be dependent in different ways. Fig-
ure 22.1.3 gives examples.

Definition of Independent Events: Events A and B are said to be indepen-
dent if knowing that B occurs, does not give you any information about
whether A occurs. For example, when you flip two coins, their outcomes are
independent, that is, whether coin 1 is heads or tails does not affect whether
coin 2 is heads or tails. The formal definition is

Pr[A|B] = Pr[A].

An equivalent definition is that events A and B are independent if and only
if

Pr[A and B] = Pr[A] · Pr[B].

See Exercises 22.0.1 and 22.0.2. Note that this second definition shows the
symmetry that if A is independent of B, then B is independent of A.
I drew events A and B in Figure 22.1.3 to be independent events. If the area
of the box is one, of A is 1

25
, and of B is 1

9
, then area of the intersection A∩B

must be is 1
25

× 1
9
. Given I eyeballed it, I make no promises. If the same two

circles were moved so they overlapped ever so slightly more, then the event
A and B would be positively dependent, while if they were moved to overlap
ever so slightly less, then they would be negatively dependent.

3

Positively Dependent: Events A′ and B are said to be positively dependent
if they are more likely to occur together, that is Pr[A′|B] > Pr[A′] and
Pr[A′ and B] > Pr[A′] · Pr[B]. (Note that in Figure 22.1.3, Pr[A′|B] = 1.)
Even if event A′ occurs if and only iff event B occurs, we do not really know
why this happens. This may occur because B “causes” A to happen, because
A “causes” B to happen, or because some event C “causes” both A and B to
happen. A butterfly flapping its wings in Africa and a storm in Toronto are
likely independent events, but they say that in this interconnected chaotic
world, these events may be dependent.

Negatively Dependent: Events A′′ and B are said to be negatively dependent
if they are less likely to occur together, that is Pr[A′′|B] < Pr[A′′] and
Pr[A′′ and B] > Pr[A′′] · Pr[B]. (Note that in Figure 22.1.3, Pr[A′′|B] = 0.)

Random Variables: Some experiments result in a value, like your winnings at gambling
or the running time of a randomized algorithm. The resulting value V is referred to
as a random variable, as it takes on different values with different probabilities.

Examples:

Venn Diagram: In Figure 22.1.4, Pr[V = 5] = 1
9
and Pr[V = 1] = 1

3
.

Number of Heads: If you flip a coin n times, the number of times that you
get a head is a random variable. If you flip it 4 times, V can take on values
between 0 and 4. Pr[V = 2] = 3

8
and Pr[V = 4] = 1

16

Indicator Variables: An indicator variable IA is a random variable which is 1
when the event A being indicated occurs and zero when it does not.

Running Time: The running time T of a randomized algorithm is a random
variable.

Expected Value: The expected value of a random variable is not the value that you expect,
but is the average value if you were to repeat it many times.

Definition: The following are three equivalent definitions.

Average: Suppose again that the randomness comes from flipping a fair coin a
fixed number of times and let Vr denote the value of V when the outcomes
of the coin flips is r. Each r is equally likely to occur. The expected value of
V is its average value.

Exp[V] =

∑
r Vr

The # of different r
=
∑

r

Pr[r]Vr

Value: Amore standard definition considers separately each value v that V might
take on.

Exp[V] =
∑

values v

Pr[V = v] · v

4

Disjoint Events: Sometimes it is easier to partition the universe of possible
outcomes into a set of events of your choosing. As in the “Average” definition
of expected value, an event could be that the coins came up as r. As in the
“Value” definition of expected value, an event could be that random variable
V takes on the value v. Or you can come up with your own set of events that
make will make your calculations as easy as possible.

Exp[V] =
∑

disjoint events A

Pr[A] · [value of V during event A]

.

Examples:

Coin Flip: If you get V = 1 for a head and V = −1 for a tail, then the expected
amount is Exp[V] = 1

2
· 1 + 1

2
· (−1) = 0.

Venn Diagram: In Figure 22.1.4, the expected value of V is Exp[V] =∑
v Pr[V = v] · v = 1

9
· 5 + 1

3
· 1 + 2

9
· 8 + 1

3
· 3 = 32

3
.

Lotteries: If you pay $5 for a lottery ticket and with probability p = 1
10,000,000

you win $25,000,000, then your expected winnings are (1 − 1
10,000,000

) · 0 +
1

10,000,000
· 25, 000, 000 = $2.50. But you paid $5. Hence, you expect to lose

half your money. This is surprising, because I expect you will lose all of your
money.

Expected Happiness: Money is not everything though. What is your expected
gain in happiness? I claim having $5 given your current level of wealth adds
more to your happiness than having $5 when you already have $25,000,000.
This proves that happiness does not increase linearly with money. In fact, I
would guess it is more logarithmic because no matter how much you have,
if the amount you have doubles, your happiness increases by more or less a
fixed amount. So let’s guess that buying a roti with your $5 would bring
you one unit of happiness and winning $25,000,000 would bring you 1,000
units of happiness. You say more? Okay, 100,000 units. Then your expected
happiness gained by buying a ticket is (1− 1

10,000,000
)·(−1)+ 1

10,000,000
·100, 000 ≈

(−1) + 0.001 ≈ −1, i.e. you lose.

Expected Number: If you flip a coin n times, the expected number of times
that you get a head is n

2
.

Indicator Variables: The expected value of an indicator variable IA equals the
probability of the event A, that is Exp[IA] = Pr[A] · 1+Pr[not A] · 0 = Pr[A].

Linearity of Sum of Expectation: A very useful fact is that the expectation of the
sum is equal to the sum of the expectations. Let V1, V2, V3, . . . , Vn be n random
variables, which may or may not be dependent in complicated ways. If you form
a new random variable denoted V ′ whose value on every outcome of the coins is
the sum of the Vi, then

Exp [V ′] = Exp

[∑

i

Vi

]
=
∑

i

Exp [Vi] .

5

Venn Diagram: In Figure 22.1.4,
Exp[V] =

∑
v Pr[V = v] · v = 1

9
· 5 + 1

3
· 1 + 2

9
· 8 + 1

3
· 3 = 32

3
.

Exp[U] =
∑

u Pr[U = u] · u = 1
9
· 2 + 1

3
· 3 + 2

9
· 4 + 1

3
· 6 = 41

9
.

Exp[(V + U)] =
∑

w Pr[(V + U) = w] · w = 1
9
· 7 + 1

3
· 4 + 2

9
· 12 + 1

3
· 9 = 77

9
.

We can check that Exp[(V + U)] = 77
9
= 32

3
+ 41

9
= Exp[V] + Exp[U].

Proof: The proof that the expectation of the sum is equal to the sum of
the expectations is as follows. The formal definition of the expectation is
Exp [U+V] =

∑
w Pr [U+V = w] ·w, however, it is not clear what to do with

this. It is better to break the universe of possibilities into finer events. For
every tuple 〈u, v〉, consider the event that U = u and V = v. Note that when
this event occurs, we know that the random variable [U+V] takes on the
value u+ v. This gives that

Exp[U+V] =
∑

disjoint events A

Pr[A] · [value of [U+V] during event A]

=
∑

〈u,v〉

Pr [U = u and V = v] · (u+ v)

The distributive and the commutative laws gives that [p · (u+ v)] + [p′ · (u′ +
v′)] = [pu+pv]+ [p′u′+p′v′] = [pu+p′u′]+ [pv+p′v′]. Such rearranging gives

Exp[U+V] =

∑

〈u,v〉

Pr [U = u and V = v] · u

+

∑

〈u,v〉

Pr [U = u and V = v] · v

Think of a matrix of values indexed by u and v. The sum of the entries can
be obtained by summing them up. It can also be obtained by summing each
row and then summing these sums or by summing each column and then
summing these sums.

Exp[U+V] =
∑

u

[∑

v

Pr [U = u and V = v] · u
]
+

∑

v

[∑

u

Pr [U = u and V = v] · v
]

We now use the reverse of the distributive law, pu+ p′u = (p+ p′)u.

Exp[U+V] =
∑

u

[∑

v

Pr [U = u and V = v]

]
· u+

∑

v

[∑

u

Pr [U = u and V = v] · v
]

6

Fix some value u. What is
∑

v Pr [U = u and V = v]? If you think of the
Venn diagram, Pr [U = u] is the area of the union of all the areas in which
U = u. In some of those areas, V = v and in some of them V = v′. It follows
that

∑
v Pr [U = u and V = v] = Pr [U = u]. Hence,

Exp[U+V] =
∑

u

Pr [U = u] · u+
∑

v

Pr [V = v] · v

but by the definition of expected values this gives

Exp[U+V] = Exp [U] + Exp [V]

Expected Number of Successes: If you have n trials where each trial has suc-
cess with probability p, the expected number of successes is pn. This is true
even if the success of each trial dependent in complicated ways on each other.

Proof: A simple proof is as follows.

Exp [Numb of successes] = Exp

[∑

i

Ii

]
=
∑

i

Exp [Ii]

=
∑

i

[p · 1 + (1−p) · 0] = pn

Expected Time Till Success: If I flip a fair coin until I get a head, I may have
to flip it only once or a million times, but the expected number of times I
have to flip it is two. If I roll a dice until I get a six, the expected number of
times I have to roll it is six. More generally, suppose an experiment succeeds
with probability p. Suppose I repeat it independently until it succeeds. Let
the random variable T be the number of times that it is repeated. A not too
surprising but useful lemma is that Exp[T] = 1

p
.

Proof 1: For T to equal the value t, it requires that the experiment fails the
first t−1 time and then succeeds the tth time. The probability of this
is Pr[T = t] = (1−p)t−1p. This gives that Exp[T] =

∑∞
t=1 Pr[T = t]t =∑∞

t=1(1−p)t−1p · t. This is a really hard sum to evaluate (Ask if you want
me do it for you). It does, however, add up to 1

p
as we want.

Proof 2: This proof is hard too. Skip it if you like. For each t ≥ 0, let It be
an indicator variable which is 1 if you must repeat the experiment more
than t times.

• What is Pr[It=1]?

– Answer: You will need to repeat the experiment more than t times
only if it failed the first t times. The probability of this is Pr[It] =
(1−p)t.

• What is Exp[It]?

– Answer: Exp[It] = Pr[It] = (1−p)t.

• What is T in terms of the It?

7

– Answer: T =
∑

t≥0 It is the total number of experiments tried.

• What is Exp[T]? Hint: For 0 ≤ q < 1,
∑

t≥0 q
t = 1

1−q
.

– Answer: Exp[T] = Exp[
∑

t≥0 It] =
∑

t≥0 Exp[It] =
∑

t≥0(1−p)t = 1
p
.

Expectation of Product: The same thing is true for the product of random variable
if the random variables are independent and is not necessarily true if they are
dependent.

Proof when Independent: We prove as follows that if V1, V2, V3, . . . , Vn are
independent random variables, then

Exp [V ′] = Exp [ΠiVi] = ΠiExp [Vi] .

The proof begins the way it did for the sum of expectations.

Exp[U×V] =
∑

w

Pr [U × V = w] · w =
∑

u

∑

v

Pr [U = u and V = v] · (u× v)

Because the events are independent we have that Pr [U = u and V = v] =
Pr [U = u] × Pr [V = v]. Then commutativity gives (p × p′) · (u × v) = (p ·
u)× (p′ · v).

Exp[U×V] =
∑

u

∑

v

[Pr [U = u] · u]× [Pr [V = v] · v]

We now use the distributed law that pq+ pq′ + p′q+ p′q′ = (p+ p′)× (q+ q′).

Exp[U×V] =

[∑

u

Pr [U = u] · u
]
×
[∑

v

Pr [V = v] · v
]
= Exp [U]× Exp [V]

Proof when Not Independent: We prove as follows that if the random vari-
ables are dependent than the previous result is not necessarily true.
Suppose that V1 = V2 = 0 with probability 1

2
and V1 = V2 = 2 with probability

1
2
. Then Exp[V1] = Exp[V2] =

1
2
·0+ 1

2
·2 = 1. Exp[V1·V2] =

1
2
·(0·0)+ 1

2
·(2·2) =

2. This is different than Exp[V1] · Exp[V2].

Random Walks: Consider a line (side walk with squares) with a wall at i = 0 and a wall
at i = n.

Completely Drunk: Each time step, the drunk man is standing at some square i and
with probability 1

2
stumbles one square forward and with probability 1

2
stumbles

one square backwards. When i = 0, he only goes forward. What is the expected
number of time steps starting at i = 0 until the man to first gets to i = n. Guess.
Is it 2n, n2, 2n or something else?

Proof: Let ti denote the expected number of time steps starting at square i until
the man to first gets to square i+1. We can write a recurrence relation. With
probability 1

2
, he goes forward and it takes him only one step. However, with

probability 1
2
, he goes backwards and that one step takes him to square i− 1.

8

From here, the expected number of time steps until he first returns to square
i is ti−1. From here, the expected number of time steps until he first gets
to square i+1 is ti. Because the expectation of the sum is the sum of the
expectations, we get the following

ti =
1
2
[1] + 1

2
[1 + ti−1 + ti]

1
2
ti = 1 + 1

2
ti−1

ti = 2 + ti−1 = 2 + 2 + ti−2 = 2j + ti−j = 2i+ t0 = 2i+ 1

.
The expected number of time steps starting at i = 0 until the man to first
gets to i = n is the expected number of time steps until he first gets to i = 1
plus the the expected number until he first gets from there to i = 2 and so
on, which is

n−1∑

i=0

ti =
n−1∑

i=0

2i+ 1 = n2 +Θ(1).

Smelling Home: Now suppose that he stumbles forward with probability 1
2
+ ǫ and

backwards with with probability 1
2
− ǫ. We want to know how much better this

guy does.

Proof: Let W ǫ
t denote the random variable giving the index i of where the man

is at time t. Similarly, let Wt denote the same but when the probabilities
are half and half. Then W ǫ

t − Wt is the random variable denoting how far
ahead the smelling man is from the drunk man. If the randomness of the two
men are independent, then it is hard to compare their locations. Instead, let
us couple their probabilities. Divide the unit line into three pieces of lengths
1
2
− ǫ, ǫ, and 1

2
. Each step, we throw one dart. If it lands in the first interval,

we call this B and both men move back one square. If it lands in the second,
we call this ǫ and the drunk man move back one square and the smelling
man moves forward one square. If it lands in the third interval, we call this
F and both men move forward one square. Note that the distance W ǫ

t −Wt

increases by two in the second case and stays fixed in the other two.

Wt = #F − (#ǫ+#B)

W ǫ
t = (#F +#ǫ) + #B

(Note if ǫ = 1
2
, then W ǫ

t = (#F + #ǫ) + #B) = (#F + #ǫ) = t, because
Pr[B] = 0.)

W ǫ
t −Wt = 2#ǫ

W ǫ
t = Wt + 2#ǫ

Exp[W ǫ
t] = Exp[Wt] + 2ǫt

We can now state that the expected time until the smelling man reaches i = n
from i = 0 is less than min(n

2ǫ
, n2 + Θ(1)). If ǫ >> 1

n
, then in n

2ǫ
time, we

9

can’t expect the drunk man to have gotten very far, but we can expect the
smelling man to be n steps in front of the him and hence past the i = n line.
On the other hand, if ǫ << 1

n
, then in n2 + Θ(1)) time, we can’t expect the

smelling man to have gotten very far ahead of the drunk man, but we can
expect the drunk man to have reached the i = n line and so so will have the
smelling man.

Plotting Probability: Other useful ways to visualize random variables are using the fol-
lowing three functions.

Value from Point: A Venn graph like Figure 22.1.4 labels each point in the unit
square with a real number. You can imagine throwing a dart at the unit square
uniformly at random (meaning each point in the square is equally likely to get
hit. The value of the random variable V will be the real value labeling the unit
square at that point. Using the unit square has the advantage that you can dawn
it nicely as done in Figure 22.1.4. However, instead of a unit square, you could
just as easily use the unit line. We will use function V̂ : [0, 1] ⇒ R to label each
real value point x in the unit interval [0, 1] with a real number. You can imagine
throwing a dart at the unit interval uniformly at randomly obtaining some real
value x. The value of the random variable V will be the real value V̂ (x) labeling
the unit interval at that point x. In general, V̂ can be an arbitrary function, but
for are purposes here, we might as well assume that the values V are sorted so
that V̂ (x) is a non-decreasing function.

Figure 22.1.4: For example, the random variable V in Figure 22.1.4. has V̂ (x) =
1 for x ∈ [0, 1

3
], V̂ (x) = 3 for x ∈ [1

3
, 2
3
], V̂ (x) = 5 for x ∈ [2

3
, 7
9
], and finally

V̂ (x) = 8 for x ∈ [7
9
, 1].

Real in [0,6 :] As as second example, let V̂ (x) = 6x and then V is a random
variable that uniformly takes on a random real value from 0 to 6. Note, that
because V can take on any real from 0 to 6, the probability it takes on any
particular value like 2 is effectively zero. On the other hand, Pr[V ≤ v] is
2
6
= 1

3
.

Pr[V ≤ v]: The second function P(≤) : R ⇒ [0, 1] used to describe a random variable
V is defined to be

P(≤)(v) = Pr[V ≤ v].

Increasing: Note that P(≤)(−∞) = Pr[V ≤ −∞] = 0. Then P(≤)(v) increases
with v until P(≤)(∞) = Pr[V ≤ ∞] = 1.

Figure 22.1.4: For example, the random variable V in Figure 22.1.4. has
P(≤)(v) = 0 for v ∈ [0, 1), P(≤)(v) =

1
3
for v ∈ [1, 3), P(≤)(v) =

2
3
for v ∈ [3, 5),

P(≤)(v) =
7
9
for v ∈ [5, 8), and P(≤)(v) = 1 for v ∈ [8,∞).

Real in [0,6 :] When V is a random variable that uniformly takes on a random
real value from 0 to 6, then for v ∈ [0, 6], P(≤)(v) = Pr[V ≤ v] = v

6
.

P(≤) Inverse of V̂ : Suppose that the previously mentioned function V̂ is strictly

increasing. Hence, if V̂ (x) = v, then V̂ (x′) ≤ v for all x′ ∈ [0, x] and V̂ (x′) > v

10

for all x′ ∈ (x, 1]. This gives that P(≤)(v) = Pr[V ≤ v] = x and hence that

P(≤)(V̂ (x)) = x, i.e. V̂ and P(≤) are inverses of each other. If V̂ is non
decreasing, but could take on the same value for a while, then it is a little
trickier, but one can show that V̂ (P(≤)(v)) = v.

Pr[V = v]: The third function P= used to describe a random variable V is defined to
express Pr[V = v].

Discrete V : If the random variable V takes on discrete values v1, v2, . . . , vr,
then a histogram has a place in the X axis for each of the possible val-
ues v1, v2, . . . , vr, and above vi is a bar of width one and height (and area)
Pr[V = vi]. Denote the resulting curve by P(=). Note that the “area” of
under this curve is one because

∑
i Pr[V = vi] must be one.

Figure 22.1.4: For example, the random variable V in Figure 22.1.4. has
P=(1) =

1
3
, P=(3) =

1
3
, P=(5) =

1
9
, and P=(8) =

2
9
.

Continuous V : If the random variable V takes a range of real values, then doing
a histogram is more complicated because then Pr[V = v] is effectively zero.

Infinitesimals: What we will do instead is break the range of values v into
intervals each of width δv, where δv is your favorite some infinitesimal
value. Then instead of considering Pr[V = v], we consider Pr[V ∈ [v, v+
δv]]. Though this probability is still an infinitesimal, we can still imagine
this being bigger than zero.

Histogram: We will now build a histogram, just as we did in the discrete
case. It has a place in the X axis for each of the v intervals. Above v is a
bar of width δv, area Pr[V ∈ [v, v+δv]], and height Pr[V ∈[v,v+δv]]

δv
. Denote

the resulting curve by P(=).

Real in [0,6 :] When V is a random variable that informally takes on a

random real value from 0 to 6, then P(=)(v) = Pr[V ∈[v,v+δv]]
δv

= δv/6
δv

=
1
6
. This curve is constant (P(=)(v) = 1

6
), which is the case for uniform

distributions.

Pr[V ∈ [v1, v2]]: From this curve we can read off any probability, because

Pr[V ∈ [v1, v2]] =
∑

intervals v∈[v1,v2]

Pr[V ∈ [v, v+δv]

=
∑

intervals v∈[v1,v2]

P(=)(v)δv =
∫

v∈[v1,v2]
P(=)(v)δv,

which is the area under the curve from v1 to v2. Therefore, the area under
the entire curve is Pr[V ∈ [−∞,∞]] = 1.

P(≤): Note this gives a relationship between this last two functions for ex-
pressing the random variable V .

P(≤)(v) = Pr[V ≤ v] =
∫

v∈[−∞,v]
P(=)(v)δv,

11

which is the area under the curve to the left of value v. Conversely P(=)

is the derivative (slope) of P(≤)(v), because

δP(≤)(v)

δ
=

P(≤)(v+δv)− P(≤)(v)

δ
=

Pr[V ∈ [v, v+δv]]

δv
= P(=)(v).

Markov’s Tail Inequality: If V is a random variable that only takes on non-negative
values and v is any fixed value, then

Pr[V ≥ v] ≤ Exp[V]

v

Proof: Let V be a random variable that only takes on non-negative values and v is any
fixed value. LetX be the random variable which equals v if V ≥ v and 0 otherwise.
Exp[V] ≥ Exp[X] = v · Pr[V ≥ v]. Rearranging give that Pr[V ≥ v] ≤ Exp[V]

v
.

Silly Example: In Figure 22.1.4, 0.2222 = 2
9
= Pr[V ≥ 8] ≤ Exp[V]

v
= 3 2/3

8
= 0.4583.

Uses: Often in practice, we can compute one of Pr[V ≥ v] or Exp[V] but not both.
Markov’s Inequality can be used to approximate the other.

Standard Deviation: Exp[V] gives the expected or the average value of the random vari-
able V . However, we might also want to know how likely or how much the actual value
of V deviates far from this expectation, namely |V −Exp[V]|. We could compute the
expected deviation, that is Exp[|V −Exp[V]|], however, the absolute values make the
computations cumbersome. Hence, we compute the expected value of the square of
the deviation, namely

Variance[V] = Exp
[
(V −Exp[V])2

]

=
∑

v

Pr[V = v] · (v−Exp[V])2.

The square acts like it is taking the absolute value because both negative and positive
values become positive. Another effect of squaring the deviation is that large deviations
like V −Exp[V] = 100 when squared become even more significant. The next thing
that we do to take the square root of this expected value, because if V is in units of,
say, meters, then so is (V −Exp[V]), but (V −Exp[V])2 and Exp [(V −Exp[V])2] would
be meters squared. By taking the square root of this, the units become meters again.
We call this the standard deviation of the random variable V .

StandardDiviation[V] =
√
Exp[(V −Exp[V])2]

Example:

Balanced: Suppose that V = 2 with probability 1
2
and V = 8 with probability

1
2
. Its expected value is Exp[V] = 1

2
· 2 + 1

2
· 8 = 5, its variance is Var[V] =∑

v Pr[V = v]·(v−Exp[V])2 = 1
2
·(2−5)2+ 1

2
·(8−5)2 = 1

2
·(−3)2+ 1

2
·(+3)2 = 9, and

its standard deviation is SD[V] =
√
Var[V] = 3. This makes sense because

we expect V to deviate by 3 from its expected value 5.

12

Venn Diagram: In Figure 22.1.4, the expected value of V is Exp[V] = 32
3
, its

variance is Var[V] =
∑

v Pr[V = v] · (v−Exp[V])2 = 1
9
· (5 − 32

3
)2 + 1

3
·

(1 − 32
3
)2 + 2

9
· (8 − 32

3
)2 + 1

3
· (3 − 32

3
)2 = 68

9
and its standard deviation is

SD[V] =
√
Var[V] = 2.624...

Another Expression for Variance:

Variance[V] = Exp
[
V 2
]
− Exp[V]2

Proof: Variance[V] = Exp [(V −Exp[V])2] = Exp [V 2 − 2V Exp[V] + Exp[V]2] =
Exp [V 2]− 2Exp[V]Exp[V] + Exp[V]2 = Exp [V 2]− Exp[V]2

Linearity of Variance: If V and U are two independent random variables, then

Variance[V + U] = Variance[V] + Variance[U].

Proof: Variance[V + U] = Exp [([V + U]−Exp[V + U])2]
(the expectation of the sum is the sum of the expectation, then rearrange)
= Exp [([(V −Exp[V])] + [(U−Exp[U])])2]
= Exp [(V −Exp[V])2 + 2(V −Exp[V]) · (U−Exp[U]) + (U−Exp[U])2]
= Exp [(V −Exp[V])2] + Exp [(U−Exp[U])2]
+2Exp [(V −Exp[V]) · (U−Exp[U])]
(for independent random variables the expectation of the product is the prod-
uct of the expectation.)
= Variance[V] + Variance[U] + 2Exp [V −Exp[V]] · Exp [U−Exp[U]]
= Variance[V] + Variance[U] + 2[Exp[V]−Exp[V]] · [Exp[U]−Exp[U]]
= Variance[V] + Variance[U] + 2[0] · [0].

Trials: Let V be the random variable indicating the number of successes when you
have n independent trials where each trial has success with probability p ≤ 1

2
.

You expect to get pn successes. We will show that the variance is close to pn
giving that the standard deviation is

√
pn.

Proof: Let Ii be the indicator variable which is 1 when the ith of the trials
succeeds and 0 otherwise. Hence, the number of successes is V =

∑
i Ii.

Exp[Ii] = p · 1 + (1− p) · 0 = p. Variance[Ii] = Exp [(Ii − Exp[Ii])
2] =

p ·(1−p)2+(1−p) ·(0−p)2 = p(1−p). Variance[V] =
∑

i Variance[Ii] = p(1−p)n.
But we assume p is small, so this is close to p.

Chebyshev’s Tail Inequality: If V is a random variable (taking on positive or negative
values) and h is any fixed value, then

Pr[|V −Exp[V]| ≥ h] ≤ SD[V]2

h2

Proof: Let V be a random variable and h is any fixed value. Let Y = (V −Exp[V])2

be a random variable. By definition, Exp[Y] = SD[V]2. Hence, by Markov’s

inequality Pr[|V −Exp[V]| ≥ h] = Pr [Y ≥ h2] ≤ Exp[Y]
h2 = SD[V]2

h2 .

13

Silly Example: In Figure 22.1.4, 0.2222 = 2
9
= Pr[V ≥ 8] ≤ Pr[|V −Exp[V]| ≥

8− 32
3
] ≤ SD[V]2

h2 = (2.624..)2

(8−3 2

3
)2

= 0.3666.

Uses: Knowing only the expectation Exp[V] one can use Markov’s Inequality to ap-
proximate and event. Knowing the standard deviation as well, one can improve
this approximation.

Chernoff’s Tail Inequalities: Let V be the random variable indicating the number of
successes when you have n independent trials where each trial has success with proba-
bility p ≤ 1

2
. You expect to get pn successes. You won’t likely get exactly pn successes,

but you are likely to get within a few standard deviations of this. Here the standard
deviation is

√
pn. The probability of deviating farther from this is exponentially small.

Deviating by h:
Pr[V ≤ pn−h] ≤ e−h2/(2pn).

Pr[V ≥ pn+h] ≤ e−h2/(2(pn+h)).

Deviating by a Constant Factor: For example, the probability of getting a con-
stant factor fewer, that is, h = ǫpn, is exponentially small.

Pr[V ≤ pn−ǫpn] ≤ e−ǫ2pn/2 = e−Θ(n).

When you don’t know p, Hoefding gives

Pr[V ≤ pn−ǫn] ≤ 2 e−2ǫ2n.

Deviating by a c Standard Deviations: My favorite way of expressing it is as fol-
lows. The standard deviation is

√
pn. The probability of getting c standard

deviations too few, that is, h = c
√
pn, is at most e−c2/2.

Pr[V ≤ pn−c
√
pn] ≤ e−c2/2.

For example, if you flip a fair coin 20,000 times, the probability of getting fewer
than pn−6

√
np = 1

2
20, 000−600 = 9, 400 heads is at most e−c2/2 = e−62/2 ≈ 10−8.

Similarly, if you flip it a large n number times, than the fraction of heads is very

likely at most
n/2+6

√
n/2

n
≈ 1

2
.

Proof Sketch: We start by shifting our random variable V to V ′ that its expectation
is zero. Let Ii be the shifted indicator variable which is 1 − p when the ith of
the trials succeeds and −p otherwise. Hence, when the number of successes is
V ≥ pn + h, we have that V ′ =

∑
i Ii ≥ (pn + h)(1 − p) + [n − (pn + h)](−p) =

[pn(1− p)− (1− p)np] + [h(1− p)+hp] = h. Let t be some value to be optimized
later. Remember that when random variables are independent, the expectation
of their product (Πi) is the product of their expectation.

Pr[V ≥ h] = Pr[etV ≥ eth] ≤ Exp[etV]

eth
=

Exp[e
∑

i
tIi]

eth
=

Exp[Πie
tIi]

eth

14

=
ΠiExp[e

tIi]

eth
=

Πi[p · et·(1−p) + (1−p) · et·(−p)]

eth
=

[pet + (1−p)]n

eth+tpn

Because this is true for every choices of t, one just has to set t to minimize this
probability.

Probability of Succeeding at Least Once: Suppose that that your experiment, say the
running of an algorithm, succeeds with at least probability p. Suppose that you are able
to repeat the experiment independently N times and that you only need to succeed at
least one of these times to succeed over all. Finally, suppose that you want to succeed
overall with probability 1− ǫ for some small ǫ > 0. Then it is sufficient to repeat the
experiment N = 1

p
ln
(
1
ǫ

)
times. The probability that you fail each of these times is at

most
Pr[AlwaysFail] ≤ (1−p)N ≤ e−pN = e− ln(1

ǫ) = ǫ.

For example, if p = 1
n2 and ǫ = 10−9 (one in a billion), thenN = 1

p
ln
(
1
ǫ

)
= n2 ln (109) ≤

21n2. See Exercise ??.

Probability of a Bad Event: Suppose that there is a list of bad things that might happen.
Suppose that you can prove that the probability that the ith one happens is at most
pi. It follows that

Pr[At least one bad thing happens] ≤
∑

i

pi

Proof: Suppose the probability that the ith bad thing happens is at most
pi. The worst case is when these bad events are disjoint so that
two never occur simultaneously. Imagine a Venn diagram with dis-
joint circles of area pi. In this case, the probability that one hap-
pens is exactly

∑
i pi. More formally, Pr[At least one bad thing happens] =

The # of r for which at least one bad thing happens
The # of r

≤ ∑
i
The # of r for which the ith bad thing occurs

The # of r =
∑

i pi.

Some Useful Approximations:

1 − p ≤ e−p: This is useful bound that we have seen already. It is very close to
equality when p is close to zero, i.e. 1− 0 = 1 = e−0. Here are some other similar
inequalities.

• 1− p+ p2

2
≥ e−p

• 1 + p ≤ ep and for p ∈ [0, 1], 1 + p+ p2 ≥ ep and 1 + p ≥ ep−
p2

3 .

• (1− p)n = 1− np+Θ(p2).

• 1 + p ≤ 1
1−p

and very close when p is small.

n! ≈
(
n

e

)n
: This is a fairly close approximation of n! which is the number of ways

of arranging n objects. Stirling’s approximation, which is even closer, is n! =√
eπn ·

(
n
e

)n
ew where 1

12(n+.5)
≤ w ≤ 1

12n
.

15

(
n

a

)a
≤
(
n

a

)
≤
(
en

a

)a
: This is a fairly close approximation of

(
n
a

)
= n!

a!(n−a)!
which is

the number of subsets of size a of n objects. Another approximation, which is
even closer is

(
n
rn

)
≈ 2Entropy(r)·n, where Entropy(r) = r log2

1
r
+ (1−r) log2

1
1−r

.

Proofs:

1 + p ≤ ep and 1 − p ≤ e−p: These come from two formal definitions of the base of
natural logarithms 2.718.., i.e. limN→∞(1+ 1

N
)N = e and limN→∞(1− 1

N
)N = e−1.

Also if you plot the two functions 1 + x and ex using the fact that the derivative
of both 1 + x and ex at zero is 1, you can see that 1 + x ≤ ex and similarly
1− x ≤ e−x. These approximations are very close when x ∈ o(1).

1 + p + p2 ≥ ep and 1 − p + p2

2
≥ e−p: The Taylor expansion of a function f(x)

at point x0 is a close approximation of f(x) for x close to x0. It is defined to
be f(x0 + p) ≈ f(x0) + f ′(x0)p + 1

2!
f ′′(x0)p

2 + 1
3!
f ′′′(x0)p

3 + Hence, ep ≈
e0+ e0p+ 1

2!
e0p2+ 1

3!
e0p3+ . . . = 1+ p+ 1

2!
p2+ 1

3!
p3+ . . . ≤ 1+ p+ p2 when p ≤ 1.

Replacing p with −p gives e−p ≈ 1+ (−p) + 1
2!
(−p)2 + 1

3!
(−p)3 + . . . ≤ 1− p+ p2

2
.

(1 − p)n = 1 − np + Θ(p2): You know that (1−p)2 = 1−2p+p2 and (1−p)3 = 1−
3p+3p2− p3. More generally, (a+ b)n =

∑
i = 0n

(
n
i

)
an−ibi and hence (1− p)n =

∑
i = 0n

(
n
i

)
(−p)i = 1− np+ n2

2
p2 −Θ(p3).

1 + p ≤ 1
1−p

: 1
1−p

= 1 + p+ p2 + p3 + The p2 become small when p is small.

n! ≈
(
n

e

)n
: ln(n!) = ln(1·2·3·. . .·n) = ln(1)+ln(2)+ln(3)+. . .+ln(n) =

∑n
i=1 ln(i) ≈

∫ n
i=1 ln(i) = n ln(n)− n. Hence, n! = eln(n!) = en ln(n)−n =

[
eln(n)

]n · e−n = nn

en
.

(
n

a

)a
≤
(
n

a

)
≤
(
en

a

)a
:
(
n
a

)
= n!

a!(n−a)!
= n(n−1)(n−2)...(n−a+1)

a(a−1)(a−2)...1
= n

a
· n−1
a−1

· n−2
a−2

· . . . · n−a+1
1

≥
(
n
a

)a
.
(
n
a

)
= n!

a!(n−a)!
= n(n−1)(n−2)...(n−a+1)

a!
≤ na

a!
≈ na

(a/e)a
=
(
en
a

)a
.

Exercise 22.0.1 (See solution in Section ??) Prove that the two definitions of independent
events are equivalent, namely Pr[A|B] = Pr[A] and Pr[A and B] = Pr[A] · Pr[B].

Exercise 22.0.2 (See solution in Section ??) When A and B are independent, compute
Pr[A and not B] and Pr[not A and not B] in terms of Pr[A] and Pr[B].

Exercise 22.0.3 (See solution in Section ??) Prove that these three definitions of Exp[V]
are equivalent.

Exercise 22.0.4 (See solution in Section ??) Suppose V is a random variable that only
takes on values in the range [0,M]. Use Markov’s inequality to prove the following.

• Pr[V < v] ≥ 1− Exp[V]
v

• Pr[V ≤ v] ≤ M−Exp[V]
M−v

• Pr[V > v] ≥ Exp[V]−v
M−v

16

Exercise Solutions

22.0.1 Clearly, the statement Pr[A|B] = Pr[A and B]
Pr[B]

= Pr[A] is true if and only the state-

ment Pr[A and B] = Pr[A] · Pr[B] is true.

22.0.2 Pr[A and not B] = Pr[A]−Pr[A and B] = Pr[A]−Pr[A] ·Pr[B] = Pr[A] ·(1−Pr[B]).
Pr[not A and not B] = Pr[not B] − Pr[A and not B] = (1 − Pr[B]) − Pr[A] · (1 −
Pr[B]) = (1− Pr[A]) · (1− Pr[B])

22.0.3 Exp[V] =
∑

[disjoint events A]
Pr[A] · [value of V during event A]

=
∑

v

∑
[disjoint events A for which V = v] Pr[A] · v

=
∑

v Pr[V = v] · v.
Obtaining the coin flips r is like an event A with Pr[A] = 1

The # of r . Hence,

Exp[V] =
∑
disjoint events A

Pr[A] · [value of V during event A] =
∑

r
1

The # of r · Vr.

22.0.4 • Markov’s inequality is Pr[V ≥ v] ≤ Exp[V]
v

.

• The events V ≥ v and V < v are complementary events. Hence, Pr[V < v] =

1− Pr[V ≥ v], which by Markov’s inequality ≥ 1− Exp[V]
v

.

• Let W = M − V be how far V is from it’s maximum value. Note that W is a
random variable that only takes on non-negative values. Similarly, let w = M−v.
Then Pr[V ≤ v] = Pr[M − V ≥ M − v] = Pr[W ≥ w], which by Markov’s

inequality ≤ Exp[W]
w

= M−Exp[V]
M−v

.

• The events V ≤ v and V > v are complementary events. Hence, Pr[V > v] =

1− Pr[V ≤ v], which by previous ≥ 1− M−Exp[V]
M−v

= Exp[V]−v
M−v

.

17

Chapter 23

Randomized Algorithms

For some computational problems, allowing the algorithm to flip coins (i.e. use a random
number generator) makes for a simpler, faster, makes for a simpler, faster, easier to analyze
algorithm. The following are the three main reasons.

Hiding the Worst Cases from the Adversary: The “running time” of a randomized
algorithms is analyzed in a different way than that of a deterministic algorithm. At
times, this way is more fair and more in line with how the algorithm actually performs
in practice. Suppose, for example, that a deterministic algorithm quickly gives the
correct answer on most input instances, yet is very slow or gives the wrong answer
on a few instances. Its running time and its correctness is generally measured to be
that on these worst case instances. A randomized algorithm might also sometimes be
very slow or gives the wrong answer. See Quick Sort Section ??. However, we accept
this, as long as on every input instance, the probability of doing so (over the choice of
random coins) is small.

Probabilistic Tools: The field of probabilistic analysis has many useful techniques and
lemmas that can make the analysis of the algorithm simple and elegant.

Solution has a Random Structure: When the solution that we are attempting to con-
struct has a random structure, a good way to construct it is to simply flip coins to
decide how to built each part. Sometimes we are then able to prove that with high
probability the solution obtained this way has better properties than any solution we
know how to construct deterministically. Moreover, if we can prove that the solution
constructed randomly has extremely good properties with some very small but non-
zero probability, for example prob = 10−100, then this proves the existence of such a
solution even though we have no reasonably quick way of finding one. Another inter-
esting situation is when the randomly constructed solution very likely has the desired
properties, for example with probability 0.999999, however, there is no quick way of
testing whether what we have produced has the desired properties.

This chapter considers these ideas further.

18

23.1 Using Randomness to Hide The Worst Cases

The standard way of measuring the running time and correctness of a deterministic algorithm
is based on the worst case input instance chosen by some nasty adversary who has studied the
algorithm in detail. This is not fair if the algorithm does very well on all but a small number
of very strange and unlikely input instances. On the other hand, knowing that the algorithm
works well on most instances is not always satisfactory, because for some applications it
is just those the hard instances that you want to solve. In such cases, it might be more
comforting to use a randomized algorithm that guarantees that on every input instance, the
correct answer will be obtained quickly with high probability.

A randomized algorithm is able to flip coins as it proceeds to decide what actions to take
next. Equivalently, a randomized algorithm A can be thought of as a set of deterministic
algorithms A1, A2, A3, . . . where Ar is what algorithm A does when the outcome of the coin
flips is r = 〈heads, tails, heads, heads, . . . , tails〉. Each such deterministic algorithm Ar will
have a small set of worst case input instances on which it either gives the wrong answer or
runs too slow. The idea is that these algorithms A1, A2, A3, . . . have different sets of worst
case instances. This randomized algorithm is good if for each input instance, the fraction
of the deterministic algorithms A1, A2, A3, . . . for which it is not a worst case instance is at
least p. Then when one of these Ar is chosen randomly, it solves this instance quickly with
probability at least p.

I sometimes find it useful to consider the analysis of randomized algorithms as a game
between an algorithm designer and an adversary who tries to construct input instance which
will be bad for the algorithm. In the game, it is not always fair for the adversarial input
chooser to know the algorithm first, because then it can choose the instance that is worst
case for this algorithm. Similarly, it is not always fair for the algorithm designer to know
the input instance first or even which instances are likely, because then it can design the
algorithm to work well on these. The way we analyze the running time of randomized
algorithms compromises between these two. In this game, the algorithm designer without
knowing the input instance must first fix what his algorithm will do given the outcome of
the coins. Knowing this, but not knowing the outcomes of the coins, the instance chooser
chooses the worst case instance. We then flip coins, run the algorithm, and see how well it
does.

Three Models: The following are formal definitions of three models.

Deterministic Worst Case: In a worst case analysis, a deterministic algorithm A
for a computational problem P must always give the correct answer quickly.

∀I, [A(I) = P (I) and T ime(A, I) ≤ Tupper(|I|)]

Las Vegas: The algorithm is said to be Las Vegas if the algorithm is always guaranteed
to give the correct answer, but the running time of the algorithm depends on the
outcomes of the random coin flips. The goal is to prove that on every input
instance, the expected running time is small.

19

∀I, [∀r, Ar(I) = P (I) and Expr [T ime(Ar, I)]

≤ Tupper(|I|)]
Monte Carlo: The algorithm is said to be Monte Carlo if the algorithm is guaranteed

to stop quickly, but it can sometimes, depending on the outcomes of the random
coin flips, give the wrong answer. The goal is to prove that on every input, the
probability of it giving the wrong answer is small.

∀I, [Prr [Ar(I) 6= P (I)]

≤ pfails and ∀r, T ime(Ar, I)

≤ Tupper(|I|)]

The following examples demonstrate these ideas.

Quick Sort: Recall the quick sort algorithm from Section ??. The algorithm chooses a pivot
element and partitions the list of numbers to be sorted into those that are smaller than
the pivot and those that are larger than it. Then it recurses on each of these two parts.
The running time varies from Θ(n log n) to Θ(n2) depending on the choices of pivots.

Deterministic Worst Case: A reasonable choice for the pivot is to always use the
element that happens to be located in the middle of array to be sorted. For all
practical purposes, this would likely work great. It would work exceptionally well
when the list is already sorted. However, there are some strange inputs cooked
ups for the sole purpose of being nasty to this particular implementation of the
algorithm on which the algorithm runs in Θ(n2) time. The adversary will provide
such an input giving a worst case time complexity of Θ(n2).

Las Vegas: In practice, what is often done is to choose the pivot element randomly
from the input elements. This makes it irrelevant which order the adversary puts
the elements in the input instance. The expected computation time is Θ(nlogn).

The Game Show Problem: The input I to the game show problem specifies which of N
doors has prizes behind them. At least half the doors are promised to have prizes. An
algorithm A is able to look behind the doors in any order that it likes, but nothing
else. It solves the problem correctly when it finds a prize. The running time is the
number of doors opened.

Deterministic Worst Case: Any deterministic algorithm fixes the order that it
looks behind the doors. Knowing this order, the adversary places no prizes behind
the first N

2
doors looked behind.

Las Vegas: In contrast, a random algorithm will look behind doors in random order.
It does not matter where the adversary puts the prizes, the probability that one
is not found after t doors is 1

2t
and the expected time until a prize is found is

Exp[T] =
∑

t Pr[T = t] · t = 2.

20

Monte Carlo: If the promise is that either at least half the doors have prizes or none
of them do and if the algorithm stops after 10 empty doors and claims that there
are no prizes, then this algorithm is always fast, but gives the wrong answer with
probability 1

210
.

Randomized Primality Testing: An integer x is said to be composite if it has factors
other than one and itself. Otherwise, it is said to be prime. For example, 6 = 2 × 3
is composite and 2, 3, 5, 7, 11, 13, 17, . . . are prime. See Appendix ?? Example 2 for
explanations of why it takes 2Θ(n) time to factor an n bit number.1 Here we give an
easy randomized algorithm by Rabin-Miller for this problem.

Fermat’s Little Theorem: Don’t worry about the math, but Fermat’s Little The-
orem says that if x is prime, then for every a ∈ [1, x − 1], it is the case that
ax−1 ≡(mod x) 1.

If we want to test if x is prime, then we can pick random a’s in the interval and
see if the equality holds. If the equality does not hold for a value of a, then x is
composite. If the equality does hold for many values of a, then we can say that x
is probably prime, or a what we call a pseudo prime.

The Game Show Problem: Finding an a for which ax−1 6≡(mod x) 1 is like finding a
prize behind door a. See Exercise 23.1.1.

Randomized Counting: In many applications, one wants to count the number of occur-
rences of something. This problem can often be expressed follows. Given the input
instance x, count the number of y for which f(x, y) = 1. It is likely very difficult
to determine the exact number. However, a good way to approximate this num-
ber is to randomly choose some large number of values y. For each, test whether
f(x, y) = 1. Then the fraction of y for which f(x, y) = 1 can be approximated
by [the number you found]/[the number you tried]. The number of y for which
f(x, y) = 1 can be approximated by [the fraction you found]×[the total number of y].

For example, suppose you had some strange shape and you
wanted to find its area. Then x would specify the shape, y would
specify some point within a surrounding box, and f(x, y) = 1 if
the point is within the shape. Then the number of y for which
f(x, y) = 1 gives you the area of your shape.

y for which f(x,y)=0

y for which f(x,y)=1

x

Exercise 23.1.1 Given an integer x, suppose that you have one door for each a ∈ [1, x−1].
We will say that there is a prize behind this door if ax−1 6≡(mod x) 1. Fermat’s Little Theorem
says that if x is pseudo prime, then none of the doors have prizes behind them and if it
is composite then at least half the doors have prizes. The algorithm attempts to determine
which is the case by opening t randomly chosen doors for some integer t.

1. If the algorithm finds a prize, what do you know about the integer? If it does not find
a prize, what do you know?

1A major break through in 2002 Agrawal etal. was to find a polynomial time deterministic algorithm for
determining whether an n bit number is prime.

21

2. If the algorithm must always give the correct answer, how many doors need to be opened
in terms of the number of digits n in the instance x.

3. If t doors are open and the input instance x is a pseudo prime, what is the probability
that the algorithm gives the correct answer? If the instance is composite, what is this
probability?

Exercise 23.1.2 Section ?? designed an iterative algorithm for separating n VLSI chips
into those that are “good” and those that are “bad” by test two chips at a time and learning
either that they are the same or that they are different. To help, at least half of the chips
are promised to be good. Now design much easier a randomized algorithm for this problem.
Here are some hints.

• Randomly select one of the chips. What is the probability that the chip is good?

• How can you learn whether or not the selected chip is good?

• If it is good, how can you easily partition the chips into good and bad chips.

• If the chip is not good, what should your algorithm do?

• When should the algorithm stop?

• What is the expected running time of this algorithm?

23.1.1 Sorry no answer

23.1.2 Sorry no answer

23.2 Locker Room Problem

Problem: There are n players, each with a locker and a driver’s license. The coach randomly
permutes the licenses and puts one in each locker. The players can agree on a strategy. Each
player independently goes into the locker room and can look in half the lockers. We say
that he succeed if he finds his own license. We say that they succeed if each player succeeds
to finds his own license. They are not allowed to change the room set up or communicate
in any way. The probability that a given player succeeds is 1

2
. If things were completely

independent then the probability that all succeeds would be 1
2n
. Is it possible for the players

to have a strategy in which they all succeed with a significantly higher probability, say 0.3?

Strategy: Each player starts by looking in his own locker. If he finds Bob’s license, he looks
in Bob’s locker. If in Bob’s locker he finds John’s license, he looks in John’s locker next.
This continues until either he finds his locker or has looked in half the lockers.

Permutation Graph: Put a directed edge from i to j if the locker i contains license j.
Having out−degree one and in−degree one, this graph contains a collection of cycles.

Success: Player i starts at node i, i.e. his own locker, and follows the edges of this graph.
He succeeds when he finds his own driver’s license, i.e. when the cycle he is following points

22

back to node i, i.e. he arrives back at node i. Hence, he succeeds when the cycle that he is
in contains at most half the nodes. They all succeed if the permutation graph contains no
cycles of length greater than half.

Probability of a k Cycle: Let k ∈ [n
2
+1, n]. We will show that the probability that a

random permutation graph contains a k cycle is 1
k
.

The number of permutation graphs is n! because it can be described by a permutation.
There are n choices for a neighbor for node 1 and then n−1 choices for a neighbor for node
2, because they can’t have the same neighbor, and so on.

Now let us count the number permutations with a cycle of length k. Choose a start node
i1. There are n ways. Choose its neighbor i2. There are n−1 ways, because we don’t want
to allow node i1. Choose i2’s neighbor i3. There are n−2 ways, because we don’t want
to allow nodes i1 or i2. Continue until you choose ik−1’s neighbor ik. There are n−(k−1)
ways. Because we want a cycle of length k, we know that ik’s neighbor is node i1. Then
there (n−k)! ways to arranging the remaining n−k players. The total number of ways is n!.
However, we over counted by a factor of k because it does not matter which of the k nodes
in the k cycle that we started with. Note that we would have over counted further if there
was a second cycle of length k in the remaining n−k nodes, but this is not possible because
n−k < k. Hence, the total number of permutation graphs with a cycle of length k is n!

k
. The

fact that the probability is 1
k
follows.

Probability of a Large Cycle: There can’t be two cycles of more than half the nodes.
Hence, the event of there being a k cycle is disjoint for the different k ∈ [n

2
+1, n]. Hence

the probability of there being a more than half cycle is
∑n

k=n
2
+1

1
k
=
∑n

k=1
1
k
−∑

n
2

k=1
1
k
≈

ln(n)−ln(n
2
) = ln(2). Hence, the probability of no such large cycle and hence of success is

1−ln(2) > 0.3.

23.3 Solutions of Optimization Problems with a Ran-

dom Structure

Optimization problems are looking for the best solution for an instance. Sometimes good
solutions have a random structure. In such cases, a good way to construct it is to simply
flip coins to decide how to built each part. We give two examples. The first one, Max Cut,
being NP-complete, likely requires exponential time to find the best solution. However, in
O(n) time, we can find a solution which is likely to be at least half as good as optimal.
The second example, expander graphs is even more extreme. Though there are deterministic
algorithms for constructing graphs with fairly good expansion properties, a random graph
almost for sure has much better expansion properties (with probability p ≥ 0.999999). A
complication, however, is that there is no polynomial time algorithm which tests whether
this randomly constructed graph has the desired properties. Pushing the limits further, it
can be proved that the same random graph has extremely good properties with some very
small but non-zero probability (eg. p ≥ 10−100). Though we have no quick way to construct
such a graph, this does proves that such a graph exists.

23

The Max Cut Problem: The input to the Max Cut problem is an undirected graph. The
output is a partition of the nodes into two sets U and V so that the number of edges
that cross over from one side to the other is as large as possible. This problem is NP-
complete and hence, the best known algorithm for finding an optimal solution requires
2Θ(n) time. The following randomized algorithm runs in time Θ(n) and is expected
to obtain a solution for which half the edges cross over. This algorithm is incredibly
simple. It simply flips a coin for each node to decide whether to put it into U or into
V . Each edge will cross over with probability 1

2
. Hence, the expected number of edges

to cross over is |E|
2
. The optimal solution cannot have more than all the edges cross

over, so the randomized algorithm is expected to perform at least half as well as the
optimal solution can do.

Expander Graphs: An n node degree d graph is said to be an Expander Graph if moving
from a set of its nodes across its edges expands us out to an even larger set of nodes.
More formally, for 0 < α < 1 and 1 < β < d, a graph G = 〈V,E〉 is an 〈α, β〉-expander
if for every subset S ⊆ V of its nodes, if |S| ≤ αn then |N(S)| ≥ β|S|. Here N(S) is
the neighborhood of S, that is all nodes with an edge from some node in S.

Non-Overlapping Sets of d Neighbors: Because each node v ∈ V has d neighbors
N(v), a set S has d|S| edges leaving these nodes. However, if these sets N(v) of
neighbors overlap a lot, then the total number of neighbors N(S) = ∪v∈SN(v)
of S might be very small. We can’t expect N(S) to be bigger than d|S| but we
do want it to have size at least β|S| where 1 < β < d. If S is too big, we can’t
expect it to expand further. Hence, we only require this expansion property for
sets S of size at most αn. Because we do expect sets of size αn to expand to a
neighborhood of size βαn, we do require that αβ < 1.

Connected with Short Paths: If αβ > 1
2
, then every pair of nodes inG is connected

with a path of length at most 2 log(n/2)
log β

.

Proof: Consider two nodes u and v. The node u has d neighbors, N(u). These
neighbors N(u) must have at least β|N(u)| = βd neighbors N(N(u)). These
neighbors N(N(u)) must have at least β2d neighbors. It follows that there
are at least βi−1d nodes with distance i from u. The last time we are allow
to do this expands the neighbor set of size |S| = αn to |N(S)| ≥ β|S| = βαn.
By the requirement that αβ > 1

2
, this new neighbor set has size greater than

n
2
nodes. The distance of these nodes from u is at most i = logβ

n
2
. This set

might not contain v. However, starting from v there is another set of more
than half the nodes that are distance i = logβ

n
2
from v. These two sets must

over lap at some node w. Hence, there is a path from u to w to v of length
at most 2 log(n/2)

log β
.

Uses: Expander graphs are very useful both in practice and for proving theorems.

Fault Tolerant Networks: As we have seen every pair of nodes in an expander
graph are connected. This is still true if a large number of nodes or edges
fail. Hence, this is a good pattern for wiring a communications network.

24

Pseudo Random Generators: Taking a short random walk in an expander
graph quickly gets you to a random node. This is useful for generating long
random looking strings from a short seed string.

Concentrating and Recycling Random Bits: If we have a source that has
some randomness in it (say n coin tosses with an unknown probability and
with unknown dependencies between the coins), we can use expander graphs
to produce a string of m bits appearing to be the result of m fair and inde-
pendent coins.

Error Correcting Codes: Expander graphs are also useful in designing ways
of encoding a message into a longer code so that if any reasonable fraction of
the longer code is corrupted, the original message can still be recovered. The
the faulty bits are connected by short paths to correct bits.

If αβ < 1, then Expander Graphs Exists: We will now prove that for any constants α
and β for which αβ < 1 there exists an 〈α, β〉-expander graph with n nodes and degree
d for some sufficiently big constant d. For example, if α = 1

2
, β = 3

2
, then d = 5 is

sufficient. To make the analysis easier, we will consider directed graphs where each
node u is connected to d nodes chosen independently at random. (If we ignore the
directions of the edges, then each node has average degree 2d and neighborhood sets
are only bigger.) We prove that the probability we do not get such an expander graph
is strictly less than one. Hence, one must exist.

Event ES,T : The graph G will not be a 〈α, β〉-expander if there is some set S for
which |S| ≤ αn and N(S) < β|S|. Hence, for each pair of sets S and T , with
|S| ≤ αn and |T | < β|S|, let ES,T denote the bad event that N(S) ⊆ T . Let
us bound the probability of ES,T when we choose G randomly. Each node in S
needs d neighbors for a total of d|S| randomly chosen neighbors. The probability

of a particular one of these landing in T is |T |
n
. Because these edges are chosen

independently, the probability of them all landing in T is
(
|T |
n

)d|S|
.

Probability of Some Bad Event: The probability that G is not an expander is the
probability that at least one of these bad events ES,T happens, which is at most
the sum of the probabilities of these individual events.

Pr [G not an expander] = Pr [At least one of the events ES,T occurs] ≤
∑

S,T

Pr [ES,T]

=
∑

(s≤αn)

∑

(S | |S|=s)

∑

(T | |T |=βs)

Pr [ES,T] =
∑

s≤αn

(
n

s

)(
n

βs

)(|T |
n

)d|S|

We now use the result that
(
n
a

)
≤
(
en
a

)a
.

Pr [G not an expander] ≤
∑

s≤αn

(
en

s

)s (en
βs

)βs (βs
n

)ds

=
∑

s≤αn

[(
en

s

)(
en

βs

)β (βs
n

)d
]s

≤
∑

s≤αn

[(
en

αn

)(
en

βαn

)β (βαn
n

)d
]s

=
∑

s≤αn

[
eβ+1

α
· (αβ)d−β

]s

25

The requirement is that αβ < 1. Hence, if d is sufficiently big,(
d ≥ log

(
2eβ+1

α

)
/ log

(
1
αβ

)
+ β

)
, then the bracketed amount is at most 1

2
.

Pr [G not an expander] ≤
∑

s≤αn

[
1

2

]s
< 1

It follows that Pr [G is an expander] > 0, meaning that there exists at least one
such G which is an expander.

26

