
Chapter 1

Recursion

1.1 Operations on Integers

Raising an integer to a power bN , multiplying x×y, and matrix multiplication each have surprising
divide and conquer algorithms.

Example 1.1.1 bN : Suppose that you are given two integers b and N and want to compute bN .

The Iterative Algorithm: The obvious iterative algorithm simply multiplies b together N
times. The obvious recursive algorithm recurses with Power(b,N) = b×Power(b,N−1).
This requires the same N multiplications.

The Straightforward Divide and Conquer Algorithm: The obvious divide and con-

quer technique cuts the problem into two halves using the property that b⌈
N

2
⌉ × b⌊

N

2
⌋ =

b⌈
N

2
⌉+⌊N

2
⌋ = bN . This leads to the recursive algorithm Power(b,N) = Power(b, ⌈N

2 ⌉) ×
Power(b, ⌊N

2 ⌋). Its recurrence relation gives T (N) = 2T (N
2 ) + 1 multiplications. The

technique in Section ?? notes that log a
log b = log 2

log 2 = 1 and f(N) = Θ(N0) so c = 0. Be-

cause log a
log b > c, the technique concludes that time is dominated by the base cases and

T (N) = Θ(N
log a

log b ) = Θ(N). This is no faster than the standard iterative algorithm.

Reducing the Number of Recursions: This algorithm can be improved by noting that
the two recursive calls are almost the same and hence need only to be called once. The
new recurrence relation gives T (N) = 1T (N

2 ) + 1 multiplications. Here log a
log b = log 1

log 2 = 0

and f(N) = Θ(N0) so c = 0. Because log a
log b = c, we conclude that time is dominated by

all levels and T (N) = Θ(f(N) log N) = Θ(log N) multiplications.

Code:
algorithm Power(b,N)

〈pre−cond〉: N ≥ 0 (N and b not both 0)

〈post−cond〉: Outputs bn.

begin
if( N = 0 ) then

return(1)
else

half = ⌊N
2 ⌋

p = Power(b, half)
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if( 2 · half = N ) then

return( p · p ) % if N is even, bN = b⌊N/2⌋ · b⌊N/2⌋

else

return( p · p · b )% if N is odd, bN = b · b⌊N/2⌋ · b⌊N/2⌋

end if
end if

end algorithm

Tree of Stack Frames :

<-| return value

| 32 = 4x4x2

_____

| b=2 | <-| return value

|_N=5_| | 4 = 2x2

\_____

| b=2 | <-| return value

|_N=2_| | 2 = 1x1x2

\_____

| b=2 | <-| return value

|_N=1_| | 1

\_____

| b=2 |

|_N=0_|

Running Time:

Input Size: One is tempted to say that the first two Θ(N) algorithms require a linear
number of multiplications and that the last Θ(log N) one requires a logarithmic
number. However, in fact the first two require exponential Θ(2n) number and the
last a linear Θ(n) number in the “size” of the input, which is typically the number
of bits n = log N to represent the number.

Operation: Is it fair to count the number of multiplications and not bit operations in
this case? I say not. The output bN contains Θ(N log b) = 2Θ(n) bits and hence it
will take this many bit operations to simply output the answer. Given this, it is not
really fair to say that the time complexity is only of Θ(n).

Example 1.1.2 x × y: The time complexity of Example 1.1.1 was measured in terms of the num-
ber of multiplications. This ignores the question of how quickly one can multiply.

The input for the next problem consists of two strings of n digits each. These are viewed
as two integers x and y either in binary or in decimal notation. The problem is to multiply
them.

The Iterative Algorithm: The standard elementary school algorithm considers each pair
of digits, one from x and the other from y, and multiplies them together. These n2

products are shifted appropriately and summed. The total time is Θ(n2). It is hard to
believe that one could do faster.
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8 2 7
5 9 6

4 2
1 2

4 8
6 3

1 8
7 2

3 5
1 0

4 0
4 9 2 8 9 2

The Straightforward Divide and Conquer Algorithm: Let us see how well the divide
and conquer technique can work. Split each sequence of digits in half and consider each
half as an integer. This gives x = x1 · 10

n

2 + x0 and y = y1 · 10
n

2 + y0. Multiplying these
symbolically gives

x × y =
(

x1 · 10
n

2 + x0

)

×
(

y1 · 10
n

2 + y0

)

= (x1y1) · 10
n + (x1y0 + x0y1) · 10

n

2 + (x0y0)

The obvious divide and conquer algorithm would recursively compute the four subprob-
lems x1y1, x1y0, x0y1, and x0y0, each of n

2 digits. This would take 4T (n
2 ) time. Then

these four products are shifted appropriately and summed. Note that additions can be
done in Θ(n) time. See Section ??. Hence, the total time is T (n) = 4T (n

2 )+Θ(n). Here
log a
log b = log 4

log 2 = 2 and f(n) = Θ(n1) so c = 1. Because log a
log b > c, the technique concludes

that time is dominated by the base cases and T (n) = Θ(n
log a

log b ) = Θ(n2). This is no
improvement in time.

Reducing the Number of Recursions: Suppose that we could find a trick so that we only
need to recurse three times instead of four. One’s intuition might be that this would only
provide a linear time savings, but in fact the savings is much more. T (n) = 3T (n

2 )+Θ(n).

Now log a
log b = log 3

log 2 = 1.58.., which is still bigger than c =. Hence, time is still dominated

by the base cases, but now this is T (n) = Θ(n
log a

log b ) = Θ(n1.58..). This is a significant
improvement from Θ(n2).

The Trick : The first step is to multiply x1y1 and x0y0 recursively as required. This leaves
us only one more recursive multiplication.

If you review the symbolic expansion of x× y, you will see that we do not actually need
to know the value of x1y0 and x0y1. We only need to know their sum. Symbolically, we
can observe the following.

x1y0 + x0y1

= [x1y1 + x1y0 + x0y1 + x0y0] − x1y1 − x0y0

= [(x1 + x0) (y1 + y0)] − x1y1 − x0y0

Hence, the sum x1y0 +x0y1 that we need can be computed by adding x1 to x0 and y1 to
y0; multiplying these sums; and subtracting off the values x1y1 and x0y0 that we know
from before. This requires only one additional recursive multiplication. Again we use
the fact that additions are fast, requiring only Θ(n) time.

Code:
algorithm Multiply(x, y)

〈pre−cond〉: x and y are two integers represented as an array of n digits
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〈post−cond〉: The output consists of their product represented as an array of n + 1
digits

begin
if(n=1) then

result( x × y ) % product of single digits
else

〈x1, x0〉 = high and low order n
2 digits of x

〈y1, y0〉 = high and low order n
2 digits of y

A = Multiply(x1, y1)
C = Multiply(x0, y0)
B = Multiply(x1 + x0, y1 + y0) − A − C

result( A · 10n + B · 10
n

2 + C )
end if

end algorithm

It is surprising that this trick reduces the time from Θ(n2) to Θ(n1.58).

Dividing into More Parts: The next question is whether the same trick can be extended
to improve the time even further. Instead of splitting each of x and y into two pieces,
let’s split them each into d pieces. The straightforward method recursively multiplies
each of the d2 pairs of pieces together, one from x and one from y. The total time is

T (n) = d2T (n
d ) + Θ(n). Here a = d2, b = d, c = 1, and log d2

log d = 2 > c. This gives

T (n) = Θ(n2). Again, we are back where we began.

Reducing the Number of Recursions: The trick now is to do the same with fewer re-
cursive multiplications. It turns out it can be done with only 2d − 1 of them. This
gives time of only T (n) = (2d − 1)T (n

d ) + Θ(n). Here a = 2d − 1, b = d, c = 1, and
log(2d−1)

log(d) ≈ log(d)+1
log(d) = 1+ 1

log(d) ≈ c. By increasing d, the time for the top stack frame and
for the base cases becomes closer and closer to being equal. Recall that when this hap-
pens, we must add an extra Θ(log n) factor to account for the Θ(log n) levels of recursion.
This gives T (n) = Θ(n log n), which is a surprising running time for multiplication.

Fast Fourier Transformations: We will not describe the trick for reducing the number of
recursive multiplications from d2 to only 2d − 1. Let it suffice that it involves thinking
of the problem as the evaluation and interpolation of polynomials. When d becomes
large, other complications arise. These are solved by using the 2d-roots of unity over a
finite field. Performing operations over this finite field require Θ(log log n) time. This
increases the total time from Θ(n log n) to Θ(n log n log log n). This algorithm is used
often for multiplication and many other applications such as signal processing. It is
referred to as Fast Fourier Transformations.

Example 1.1.3 Strassen’s Matrix Multiplication: The next problem is to multiply two n×n
matrices.

The Iterative Algorithm: The obvious iterative algorithm computes the 〈i, j〉 entry of the
product matrix by multiplying the ith row of the first matrix with the jth column of the
second. This requires Θ(n) scalar multiplications. Because there are n2 such entries, the
total time is Θ(n3).
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The Straightforward Divide and Conquer Algorithm: When designing a divide and
conquer algorithm, the first step is to divide these two matrices into four submatrices
each. Multiplying these symbolically gives the following.

(

a b
c d

)(

e g
f h

)

=

(

ae + bf ag + bh
ce + df cg + dh

)

Computing the four n
2 × n

2 submatrices in this product in this way requires recursively
multiplying eight pairs of n

2 × n
2 matrices. The total computation time is given by the

recurrence relation T (n) = 8T (n/2)+ Θ(n2) = Θ(n
log 8
log 2 ) = Θ(n3). This is no faster than

the standard iterative algorithm.

Reducing the Number of Recursions: Strassen found a way of computing the four n
2 ×

n
2

submatrices in this product using only seven such recursive calls. This gives T (n) =

7T (n/2) + Θ(n2) = Θ(n
log 7
log 2 ) = Θ(n2.8073). We will not include the details of the algo-

rithm.

Exercise 1.1.1 (See solution in Section ??) Recursive GCD

1. Write a recursive program to find the GCD of two numbers. The program should mirror the
iterative algorithm found in Section ??.

2. Rewrite this recursive algorithm to solve the following more general problem. The input still
consists of two integers a and b. The output consists of three integers g, u, and v, such that
u · a + v · b = g = GCD(a, b). For example, on a = 25 and b = 15 the algorithm outputs
〈5, 2,−3〉 because 2 · 25 − 3 · 15 = 50 − 45 = 5 = GCD(25, 15). Provide both a paragraph
containing the friend’s explanation of the algorithm and the recursive code.

3. Write an algorithm for the following problem. The input consist of three integers a, b and w.
Assume that you live in a country that has two types of coins, one worth a dollars and the
other b dollars. Both you and the store keeper have a pocket full of each. You must pay him w
dollars. You can give him any number of coins and he may give you change with any number
of coins. Your algorithm must determine whether or not this is possible and if so describe
some way how (not necessarily the the optimal way). Hint: compute GCD(a, b) and use the
three values g, u, and v. Consider the two cases when g divides w and when it does not. (If
you want to find the optimal number of coins. Basically, you change a solution by using the
fact that ( b

g ) · a − (a
g ) · b = 0.)

4. Designing an algorithm that when given a prime p and an integer x ∈ [1, p − 1], outputs an
inverse y such that x · y ≡mod p 1. Hint: First show that GCD(p, x) = 1. Then compute
GCD(p, x) and use the values u, and v. Proving that every x has such an inverse proves that
the integers mod a prime forms a field.

• Answer:

a) Given the integers a and b, the iterative algorithm creates two numbers x = b and y =
a mod b. It notes that GCD(a, b) = GCD(x, y), and hence it can return GCD(x, y)
instead of GCD(a, b). This algorithm is even easier when you have a friend. We simply
give the subinstance 〈x, y〉 to the friend and he computes GCD(x, y) for us. For the
iterative algorithm, we need to make sure we are “making progress” and for the recursive
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algorithm, we need to make sure that we give the friend a “smaller” instance. Either way,
we make sure that in some way 〈x, y〉 is smaller than 〈a, b〉. For the iterative algorithm,
we need an exit condition that we are sure to eventually meet and for the recursive
algorithm, we need bases cases such that every possible instance is handled. Either way,
we consider the case when y or b is zero. The resulting code is

algorithm GCD(a, b)

〈pre−cond〉: a and b are integers.

〈post−cond〉: Returns GCD(a, b).

begin
if(b = 0) then

return( a )
else

return( GCD(b, a mod b) )
end if

end algorithm

b) We will need to understand this relationship y = a mod b better. Here y is the remainder
when you divide a by b. If we let r = ⌊a

b ⌋, then a = r · b + y or y = a − r · b.

When we generalize problem, the friend in addition to g also gives us usub and vsub such
that usub ·x+ vsub ·y = g = GCD(x, y) = GCD(a, b). Plugging in x = b and y = a− r · b
gives usub · b + vsub · (a − r · b) = g or vsub · a + (usub − vsub · r) · b = g. Hence, if we set
u = vsub and v = usub − vsub · r, then we get u · a + v · b = g = GCD(a, b) as required.
We simply provide these answers. For the base case with b = 0, g = GCD(a, b) = a.
Hence, u = 1 and v = 0, gives that u · a + v · b = g = GCD(a, b). The resulting code is

algorithm GCD(a, b)

〈pre−cond〉: a and b are integers.

〈post−cond〉: Returns integers g, u, and v such that u · a + v · b = g = GCD(a, b).

begin
if(b = 0) then

return( 〈a, 1, 0〉 )
else

x = b
r = ⌊a

b ⌋
y = a − r · b
〈g, usub, vsub〉 = GCD(x, y)
u = vsub

v = usub − vsub · r
return( 〈g, u, v〉 )

end if
end algorithm

c) Our goal is to find two integers U and V such that U · a + V · t = w. Then you “give” the
store keeper U of the a coins and V of the b coins for a total worth of w dollars. If U or
V is negative, this amounts to the store keeper giving you coins as change.

To find U and V , lets start by calling the GCD algorithm on a and b. This returns
integers g, u, and v such that u · a + v · b = g = GCD(a, b).
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If g divides evenly into w, then multiplying through by (w
g ) gives (uw

g ) · a + (vw
g ) · b =

g(w
g ) = w and we are done.

By the definition of g = GCD(a, b), we know g divides into a and into b and hence, it
divides evenly into U · a + V · b. It follows that if g does not divide evenly into w, then
there is no integer solution to U · a + V · b = w.

d) A Group is a set of values closed under “plus” and “times”. For example, the integers mod
6 forms a group. In this group, 4 × 4 ≡mod 6 16 ≡mod 6 4 and 4 × 3 ≡mod 6 12 ≡mod 6 0.

Do not confuse this notation with the function Mod(x, 6) which returns the remainder
of x

6 which is between 0 and 5. Instead we mean the following. When we are working in
the world of integers mod 6, we have that . . . − 11 = −5 = 1 = 7 = 13 . . . are different
”names” for the same object. Similarly −6 = 0 = 6 = 12. Hence, our world only has
6 objects, those that are equal to 0 mod 6, those equal to 1, . . ., and those equal to 5.
Then the group defines how to add and multiply these objects together. For example,
−5 × 8 ≡mod 6 −40 ≡mod 6 2 and 1 × 2 ≡mod 6 2 are two ways of saying the same thing.

A Field is the same except every value x other than zero has an inverse y such that
x · y = 1. We will see that the integers mod 6 is not a field, but the integers mod 7 is a
field. For example, mod 7, the inverse of 2 is 4 because 2 × 4 = 8 ≡mod 7 1.

The integers mod p forms a field if p is prime. This exercise proves this, namely the
exercise is to design an algorithm that when given a prime p and an integer x ∈ [1, p−1],
outputs an inverse y such that x · y ≡mod p 1.

First note that because p is prime and p does not divide x, it follows that GCD(p, x) = 1.
We start by calling the GCD algorithm on p and x. This returns integers g = 1, u, and
v such that u · p + v · x = 1. This is another way of writing x · v ≡mod p 1. Hence, v is
the inverse of x.

In contrast to the above field, the group consisting of the integers mod n is a little odd
when n is not prime. For example, suppose n = a · b, with a and b neither zero nor one
mod n. These integers are what we call zero-divisors because a · b ≡mod n 0. We use this
to prove that a does not have an inverse mod n. This will prove that the integers mod n
is not a field if n is not prime.

Suppose by way of contradiction that a has an inverse c such that c · a ≡mod n 1. Then
if we multiply a · b ≡mod n 0 through by c, we get that c · a · b ≡mod n c · 0 or that
1 · b = b ≡mod n 0, which is a contradiction.

1.2 Ackermann’s Function

If you are wondering just how slowly a program can run, consider the algorithm below. Assume
the input parameters n and k are natural numbers.

Algorithm:

algorithm A(k, n)
if( k = 0) then

return( n+1+1 )
else

if( n = 0) then
if( k = 1) then
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return( 0 )
else

return( 1 )
else

return( A(k − 1, A(k, n − 1)))
end if

end if
end algorithm

Recurrence Relation: Let Tk(n) denote the value returned by A(k, n). This gives T0(n) = 2+n,
T1(0) = 0, Tk(0) = 1 for k ≥ 2, and Tk(n) = Tk−1(Tk(n − 1)) for k > 0 and n > 0.

Solving:

T0(n) = 2 + n

T1(n) = T0(T1(n − 1)) = 2 + T1(n − 1) = 4 + T1(n − 2) = 2i + T1(n − i) = 2n + T1(0) = 2n.

T2(n) = T1(T2(n − 1)) = 2 · T2(n − 1) = 22 · T2(n − 2) = 2i · T2(n − i) = 2n · T2(0) = 2n

T3(n) = T2(T3(n − 1)) = 2T3(n−1) = 22T3(n−2)
=



222
...

2

︸ ︷︷ ︸

i





T3(n−i)

=



222
...

2

︸ ︷︷ ︸

n





T3(0)

= 222...
2

︸ ︷︷ ︸

n

T4(0) = 1. T4(1) = T3(T4(0)) = T3(1) = 222...
2

︸ ︷︷ ︸

1

= 2.

T4(2) = T3(T4(1)) = T3(2) = 222...
2

︸ ︷︷ ︸

2

= 22 = 4.

T4(3) = T3(T4(2)) = T3(4) = 222...
2

︸ ︷︷ ︸

4

= 2222

= 224
= 216 = 65, 536.

Note 222...
2

︸ ︷︷ ︸

5

= 265,536 ≈ 1021,706, while the number of atoms in the universe is less than 10100.

T4(4) = T3(T4(3)) = T3(65, 536) = 222...
2

︸ ︷︷ ︸

65,536

.

Ackermann’s function is defined to be A(n) = Tn(n). A(4) is is bigger than any number in
the natural world. A(5) is unimaginable.

Running Time: The only way that the program builds up a big number is by continually incre-
menting it by one. Hence, the number of times one is added is at least as huge as the value
Tk(n) returned.

Crashing: Programs can stop at run-time because of: 1) over flow in an integer value; 2) running
out of memory; 3) running out of time. Which is likely to happen first? If the machine’s
integers are 32 bits, then they hold a value that is about 1010. Incrementing up to this value
will take a long time. However, much worse than this, each two increments needs another
recursive call creating a stack of about this many recursive stack frames. The machine is
bound to run out of memory first.

Exercise 1.2.1 Design the algorithm and compute the running time when d = 3.
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1.3 Exercises

Exercise 1.3.1 Review the problem on Iterative Cake Cutting. You are now to write a recursive
algorithm for the same problem. You will, of course, need to make the pre and post conditions more
general so that when you recurse, your subinstances meet the preconditions. Similar to moving from
insertion sort to merge sort, you need to make the algorithm faster by cutting the problem in half.

1. You will need to generalize the problem so that the subinstance you would like your friend to
solve is a legal instance according to the preconditions and so that the post conditions states
the task you would like him to solve. Make the new problem, however, natural. Do not, for
example, pass the number of players n in the original problem or the level of recursion. The
input should simply be a set of players and a sub-interval of cake. The post condition should
state the requirements on how this subinterval is divided among these players. To make the
problem easier, assume that the number of players is n = 2i for some integer i.

2. Give recursive pseudo code for this algorithm. As a big hint, towards designing a recursive
algorithm, we will tell you the first things that the algorithm does. Each player specifies where
he would cut if he were to cut the cake in half. Then one of these spots is chosen. You need
to decide which one and how to create two subinstances from this.

3. Prove that if your instance meets the preconditions, then your two subinstances also meet the
preconditions.

4. Prove that if your friend’s solutions meet the postconditions, then your solution meets the
postcondition.

5. Prove that your solution for the base case meets the postconditions.

6. Give and solve the recurrence relation for the Running Time of this algorithm.

7. Now suppose that n is not 2i for some integer i. How would we change the algorithm so that
it handles the case when n is odd? I have two solutions. One which modifies the recursive
algorithm directly and one that combines the iterative algorithm and the recursive algorithm.
You only need to do one of the two (as long as it works and does not increase the bigOh of
the running time.)
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