COSC 6111 Advanced Design and Analysis of Algorithms
Jeff Edmonds
Assignment: FFT

First Person:
Family Name:
Given Name:
Student \#:
Email:

Second Person:
Family Name:
Given Name:
Student \#:
Email:

Problem Name	If Done Old Mark	Check t to be if Marked	New Mark
1 Orthogonal			

Jeff Edmonds
Assignment: FFT

1. Orthogonal
(a) Suppose that in your field $\omega=e^{i 2 \pi \frac{1}{n}}$ is an $n^{t h}$ root of unity, i.e. that $\omega^{n}=1$ and k is not zero $\bmod n$. Prove that the sum $\sum_{j=0}^{n-1} \omega^{j k}$ equals zero. This is more obviously true when n is even, but we want it proved when n is odd as well. Hint: Prove and use the standard evaluation of geometric sums.
(b) The $f^{\text {th }}$ complex FT basis is $B_{f}[j]=e^{i 2 \pi f \frac{j}{n}}$ for $f, j \in[0, n-1]$. Use the previous answer to prove that for integers $f \neq g$ that B_{f} is orthogonal to B_{g} because $B_{f} \cdot B_{g}=\sum_{j=0 . . n-1} B_{f}[j] \times B_{g}[j]=0$.
(c) Amusingly, what is the length of the vector $\left|B_{f}\right|^{2}=\sum_{j=0 . . n-1}\left(B_{f}[j]\right)^{2}$. What if $f=\frac{n}{2}$?
(d) Use the fact that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ and $e^{-i \theta}=\cos (\theta)-i \sin (\theta)$, to express $\cos (\theta)$ in terms of $e^{i \theta}$ and $e^{-i \theta}$.
(e) Prove that for integers $f \neq g$ and $f+g \neq n$, that c_{f} is orthogonal to c_{g} because $c_{f} \cdot c_{g}=$ $\sum_{j=0 . . n-1} \cos \left(2 \pi f \frac{j}{n}\right) \times \cos \left(2 \pi g \frac{j}{n}\right)=0$.
(f) Prove that for integers $f \neq 0$ that $\left|c_{f}\right|^{2}=\sum_{j=0 . . n-1} \cos \left(2 \pi f \frac{j}{n}\right)^{2}=\frac{n}{2}$.
(g) Think of $B_{\langle f, j\rangle}$ and $\langle c, s\rangle_{\langle f, j\rangle}$ as matrices. How do you use the above facts to compute their inverses?
