COSC 6111 Advanced Design and Analysis of Algorithms Jeff Edmonds Assignment: FFT

First Person:

Family Name: Given Name: Student #: Email: Second Person: Family Name: Given Name: Student #: Email:

Problem Name	If Done Old Mark	Check if to be Marked	New Mark
1 Orthogonal			

COSC 6111 Advanced Design and Analysis of Algorithms Jeff Edmonds Assignment: FFT

1. Orthogonal

- (a) Suppose that in your field $\omega = e^{i2\pi \frac{1}{n}}$ is an n^{th} root of unity, i.e. that $\omega^n = 1$ and k is not zero mod n. Prove that the sum $\sum_{j=0}^{n-1} \omega^{jk}$ equals zero. This is more obviously true when n is even, but we want it proved when n is odd as well. Hint: Prove and use the standard evaluation of geometric sums.
- (b) The f^{th} complex FT basis is $B_f[j] = e^{i2\pi f \frac{j}{n}}$ for $f, j \in [0, n-1]$. Use the previous answer to prove that for integers $f \neq g$ that B_f is orthogonal to B_g because $B_f \cdot B_g = \sum_{j=0..n-1} B_f[j] \times B_g[j] = 0$.
- (c) Amusingly, what is the length of the vector $|B_f|^2 = \sum_{j=0..n-1} (B_f[j])^2$. What if $f = \frac{n}{2}$?
- (d) Use the fact that $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ and $e^{-i\theta} = \cos(\theta) i\sin(\theta)$, to express $\cos(\theta)$ in terms of $e^{i\theta}$ and $e^{-i\theta}$.
- (e) Prove that for integers $f \neq g$ and $f + g \neq n$, that c_f is orthogonal to c_g because $c_f \cdot c_g = \sum_{j=0..n-1} \cos(2\pi f \frac{j}{n}) \times \cos(2\pi g \frac{j}{n}) = 0.$
- (f) Prove that for integers $f \neq 0$ that $|c_f|^2 = \sum_{i=0..n-1} \cos(2\pi f \frac{j}{n})^2 = \frac{n}{2}$.
- (g) Think of $B_{\langle f,j\rangle}$ and $\langle c,s\rangle_{\langle f,j\rangle}$ as matrices. How do you use the above facts to compute their inverses?