
CSE 3101 Design and Analysis of Algorithms
Meta Steps for Unit 5

Jeff Edmonds

This contains the most important concepts in this unit. You will not be able to pass this course without
knowing and understanding these. The steps provided must be followed on all assignments and tests in this
course. Do not believe that because you know the material, you can answer the questions in your own way.
Though this material is necessary, it does not contain everything that you need. You must read the book,
go to class, review the slides, and ask lots of question.

======
New method.

1. Given an instance, go through the game of life.
What does Pooh Bear remember about his past so that he can continue?
How do you index the states that he might be in?
What actions might he take from where he is? (The bird tells him which to take.)
Describe the nodes, the source node s, the sink node t, the edges, and the edge weights of the resulting
graph.
Give special thought to the edges into t.
Explain why.
Hint: Be sure that there is a 1-1 mapping between the valid solutions of the problem and the st-paths
of your graph. (You do not need to discuss this.)
Hint: Be sure to have as few edges as possible.

2. In order to make the code more esthetic, we turn the everything around.
Give the bird-friend algorithm.

• What is the set of subinstances solved? What is the input/output of each?

• What question do I ask the bird?

• What answers does she give?

• For each such answer k, what subinstance do you give your friend and what does he give you?

• And how do you form your answer optSol〈i,k〉?

3. Which subinstances are base cases?

4. Complete the following lines of the code:
loop over the subinstances . . . (give order)

loop over the bird answers . . .
% optSol〈i,k〉 =

optCost〈i,k〉 =

5. What is the running time of this algorithm?

Chapters 17,18,&19: Dynamic Programming Algorithms

When providing a dynamic programming algorithm and its proof of correctness, the following are all the
paragraphs that should be included, their headings, and what they should contain. (See HTA pg 268 for the
full description of the steps)

1) Specifications: This is likely part of the question and hence does not need to be written. However,
before writing anything consider: What is the set of instances, for each instance what is its set of valid
solutions, and for each solution what is its cost/value.



Algorithm using Trusted Bird and Friend: I have my instance I. The little bird knows an optimal
solution optS to it.

2) Question for Bird: I ask the little bird a little question about it. Choose something like one of
the following:

• Is the last object from the instance in the solution?

• What is the last object in the solution?

• The solution forms a tree. What is the object at the root?

3) Possible Answers from Bird: Define the list of possible answers that she may give. (Enumerate
them with k ∈ [K]). We want the number K of these answers to be small.

4) Trust Her: Assume that the little gives me the answer indexed by k. Trust her. What does this
tell you about the solution optS to your instance. More importantly, what does it tell the parts
of the solution that she did not tell you?

5) Constructing Subinstances: The bird gave me some of the solution optS I am looking for. I
want my recursive friend to give me the rest of it. However, I can only ask him a smaller instance
to my same computational problem. What instance subI should I give my friend so that he will
give me what I want. Again, we don’t micro manage him, but trust him. He gives me an optimal
solution optSubSol for his instance subI and its cost.

6) Constructing a Solution for My Instance: I produce an optimal solution optSol[k] for my in-
stance I from the bird’s answer k and the friend’s solution optSubSol. If my little bird happens
to be trust worthy, then this is an optimal solution. But even if not, this will be the best solution
for my instance from amongst those consistent with the kth bird answer.

7) Costs of Solution: Similarly, I compute the cost optCost[k] of our solution optSol[k].

Recursive Back Tracing Algorithm:

8) Best of the Best: I can trust the friend because he is a recursive version of myself. Not actually
having a little bird, I try all her answers and take best of best.

9) Base Cases: An instance that is so small that there are no smaller instances which can be given
to a friend is considered to be a base case. The base case instances and their solutions need to be
considered.

Dynamic Programming Algorithm:

10) The Set of Subinstances: I imagine running the above recursive backtracking algorithm on my
instance I. Determine the complete set S of subinstances subI ever given to me, my friends,
their friends. Note that this set S needs to 1) contain my instance I; 2) be closed under this
“sub”-operator; 3) all (or at least most) of these subinstances should be needed.

11) Construct a Table Indexed by Subinstances: I index these subinstances with i (and maybe
j) so that subI[i, j] denotes a particular subinstance. Which subinstance subI[i, j] denotes needs
to be carefully described. I build a table indexed by these subinstances so that optS[i, j] stores an
optimal solution for instance subI[i, j], optCost[i, j] the cost of this solution, and birdAdvice[i, j]
the advice given by the bird on this subinstance. (Actually we don’t store the solution because it
is too big.)

12) The Order in which to Fill the Table: The order in which the friends must solve their subin-
stances must be determined. It must be an an order so that nobody has to wait, i.e. from smaller
to larger instances.

13) Loop Over Subinstances: A key line in the dynamic programming algorithm is the iteration
over these instances in this order. Let subI[i, j] denote the one currently being worked on. Be
clear what this instance is. The task now is to find an optimal solution for it and to store it and
its cost in the table at optS[i, j] and optCost[i, j]. This is done in the exact same way that it is
above. The only difference is how the friends communicate.

2



14) Question for Bird: I have my instance subI[i, j] and the little bird knows an optimal solu-
tion optS[i, j] to it. I ask her a little question about it. A key line in the dynamic program-
ming algorithm is the iteration over these bird answers indexed by k ∈ [K]. Be clear what
the current answer is.

15) Constructing Subinstances: I have my instance subI[i, j] and the little bird has given
my his kth answer. Trusting the bird, I consider what her answer tells me about the parts
of the solution that she did not tell me. I design a subinstance subI[i′, j′] to give my
friend so that his solution will give me the parts of the solution that the little did not
give me.

16) Communication Between Friends: The key difference between recursive backtrack-
ing and dynamic programming is how the friends communicate. When you as the recursive
backtracking friend on instance I wants help from a friend on instance subI, you recurse
and wait until he computes and returns a solution. In contrast, when you as the dynamic
programming friend on instance subI[i, j] want help from a friend on instance subI[i′, j′],
you assume that because his instance is smaller, he has already found an optimal solution
for his instance and has stored it and its cost in the table at optS[i′, j′] and optCost[i′, j′].
All you need to do is look it up. Similarly, when you have finally completed solving your
instance you will store the solution and its cost in the table at optS[i, j] and optCost[i, j].

17) Constructing a Solution for My Instance: I produce a solution optSol〈〈i,j〉,k〉 for
my instance subI[i, j] from the bird’s answer k and the friend’s solution optSubSol. This
will be the best solution for my instance subI[i, j] from amongst those consistent with the
kth bird answer.

18) Costs of Solution: Similarly, I compute the cost optCost〈〈i,j〉,k〉 of my solution
optSol〈〈i,j〉,k〉.

19) Best of the Best: Once I have for each bird’s answer k, the best solution optSol〈〈i,j〉,k〉 for

my instance optS[i, j] from amongst those consistent with the kth bird’s answer, I take best
of best. This will be an overall best solution. I store it and its cost in the table at optS[i, j]
and optCost[i, j].

20) Solution Too Big: Actually, the solution optS[i, j] is too big and hence it takes too much
time and space storing and copying this from friend to friend. Hence, we comment out every
line of code involving solutions. Instead, we store the cost of this solution in optCost[i, j] and
the advice given by the bird on this subinstance in birdAdvice[i, j].

21) Base Cases: A recursive back tracking algorithm says, “If the instance I that I am personally
given is so small that there are no smaller instances which can be given to a friend, then I must
solve it myself and return its answer”. Do not do this in a dynamic programming algorithm. Note
that even if the end user never calls the algorithm on such a base case instance, a recursive program
needs to handle these because it calls itself on these smaller and smaller instances, stopping at
the base cases. In contrast, dynamic programming algorithms do not recurse. Hence, my instance
is a base case only if the end user gives it. Despite this a dynamic programming algorithms
must always solve a collection of base cases. Recall that S is defined to be the complete set
of subinstances subI ever given to me, my friends, their friends . . .. The table is indexed by
these subinstances and each needs to be solved. In fact, the base cases, being the smallest of
these are solved first. Start the algorithm by storing for each base case instance subI[i, j] ∈ S,
its (commented out) optimal solution optS[i, j], cost optCost[i, j] of this solution, and the bird’s
advice birdAdvice[i, j] into the table.

22) Code: Your code must have the following structure.

algorithm DynamicProgrammingAlg (I)

〈pre−cond〉: I is my instance.

〈post−cond〉: optSol is an optimal solution for I and optCost is it’s cost.

begin

3



% Table: subI[i, j] denotes the subinstance indexed by 〈i, j〉 (Describe).
optSol[i, j] would store an optimal solution for it, but it is too big. Hence, we store only
the bird’s advice birdAdvice[i, j] given for the subinstance and the cost optCost[i, j] of an
optimal solution.

table[rangei, rangej ] optCost, birdAdvice

% Base Cases: Describe the base cases and their solutions.
loop over base cases

% optSol[basecases] = its solution
optCost[basecases] = its cost
birdAdvice[basecases] =?

end loop

% General Cases: Loop over subinstances in the table.
for i ∈ [rangei]

for j ∈ [rangej ]
% Solve instance subI[i, j] and fill in table entry 〈i, j〉.
% Try each possible bird answer.
for k ∈ [K]

% The bird and Friend Alg: see above
% optSol〈〈i,j〉,k〉 = Describe how to construct the solution to our instance subI[i, j]

from the bird’s advice k and the solution optSol[friend] to our
friends instance subI[friend]. This will be the best solution for our
instance from amongst those consistent with the kth bird answer.

optCost〈〈i,j〉,k〉 = Describe how to construct the cost of this solution from the bird’s
advice k and the cost optCost[friend] of our friends solution.

end for
% Having the best, optSol〈〈i,j〉,k〉, for each bird’s answer k, we keep the best of these best.
kmin = “a k that minimizes optCost〈〈i,j〉,k〉”
% optSol[i, j] = optSol〈〈i,j〉,kmin〉

optCost[i, j] = optCost〈〈i,j〉,kmin〉

birdAdvice[i, j] = kmin

end for
optSol = AlgWithAdvice (I, birdAdvice)
return 〈optSol, optCost[initial instance]〉

end algorithm

23) Constructing the Solution: We do all of this work, but because we commented out the lines
of code having to do with solutions, we do not in the end have the optimal solution for our initial
instance I. However, all this work was not in vain. We now have the advice the little bird would
give for each every subinstance in S. We then can run the recursive back tracking algorithm to
obtain the optimal solution for I. This computation is now very fast because we do not need to
try all the bird’s answers. Jeff does not require you to include the code for this during your exam.

24) Running Time: Clearly state the number of subinstances in the table. Clearly state the number
of bird answers per subinstance. The running time is the product of these.

======================================================

Reduction of any Dynamic Programming Algorithm to LeveledGraph (G, s, t): I have said at
various times that most dynamic programming algorithms can be reduced to optimum s-t path in
a leveled graph.

LeveledGraph (G, s, t): We covered the problem LeveledGraph (G, s, t). Its input is ILG = 〈G, s, t〉
where G is a weighted leveled graph and s and t are nodes. A solution SLG is a path from s to
t through G. The cost of a solution costLG(SLG) is the sum of the weights of the edges in

4



the given path. If we climb the mountain, the oracle OracleLG will give us an optimal solution
OracleLG(ILG) = SLG, for which we can compute its cost. This optimal could be that of minimum
or of maximum cost depending on what is needed.

Algorithm for Problem P (IP ) Consider some problem P (IP ). Its input is IP and its solution
is SP with cost costP (SP ). Our goal is construct an algorithm AlgP for problem P . Clearly
it must take IP as input. It maps this given instance IP to instance ILG using our program
ILG = InstanceMap(IP ). Our algorithm then gives ILG to OracleLG(ILG) who gives us SLG. Our
algorithm then maps solution SLG to solution SP using our program SP = SolutionMap(SLG).

Correct: All you need to do to prove that your algorithm AlgP works is to show that the solution map
is a bijection SolutionMap−1(SP ) = SLG and show that this bijection keeps the solutions ordered
with respect to cost, namely costP (SP ) ≥ costP (S

′
P ) if an only if costLG(SLG) ≥ costLG(S

′
LG).

From this, we can conclude that AlgP returns the optimal solution if and only if the oracle does.

Hey recursion is like a reduction to the same problem - expect with smaller instances.
Hey we discussed how a dynamic programming algorithm with a non-linear global cost can suffered
from the fact that the solution bijection did not keeps the solutions ordered with respect to cost.

Graph G: Algorithm AlgP take its input IP and maps it using InstanceMap(IP ) to ILG = 〈G, s, t〉.
The oracle give us the optimal s-t path through this graph G. Lets try to understand this graph
G in three different ways.

1. The nodes of G are the cells of the dynamic programming table. See the five examples below.

2. Take the tree of stack frames produced by a recursive back tracking algorithm and to merge
some of its nodes. This gives you the graph G.

3. Look at life as following a path between the possible states that one might be in, i.e. a DFA
automaton.

Nodes of G are Subinstances:

Recursive Backtracking: Recursion given an original instance IP recurses on smaller subin-
stances which in turn recurses on smaller subinstances and so on. This is implemented by a
tree of stack frames. In this tree, there is a node for every subinstance that is ever solved
when starting at our original instance IP . Recursive backtracking sometimes solves a given
subinstance many many times. When this happens, dynamic programming reduces the total
computation time by solving each subinstance only once. Imagine what happens to the recur-
sion tree when you merge a set of its nodes into one. It become a DAG, i.e. a directed acyclic
graph, i.e. a leveled graph, i.e. an instance to LeveledGraph(G, s, t). Here node t, being our

5



destination, will be our original instance IP , i.e. the root of the tree of stack frames. We
might have to add a new node s to this collapsed graph G to be for starting point and put
an edge from it to every base case, i.e. to every node with no children. The oracle give us the
optimal s-t path that winds back up though this newly formed graph G.

Subinstances/Nodes: Instead of constructing AlgP for problem P , suppose instead we formed
a dynamic programming algorithm for P . In this case, we imagine running the recursive
backtracking algorithm and collecting this set of subinstances. Then we “index” a table with
these subinstances. This is done by specifying each subinstance subI[i, j] with one or two
integers 〈i, j〉 and then indexing the table by these.

Edges: When construction this dynamic programming algorithm for P , focusing your attention
on solving one of its subinstances subI[i, j], imagine sitting the corresponding node of this
graph. You ask your little bird to tell you some information about the solution. The recursive
back tracking stack frame subI[i, j] iteratively tries all the possible answers k ∈ [K] that she
might tell you. For each k tried, the stack frame recurses. Each time it recurses, the tree
of stack frames has an edge from subI[i, j] to the subinstance subI[i′, j′] that you ask your
friend. Hence, the bird’s answer k effectively tells you which of the outgoing edges you should
take. Following this edges gets you to your friend’s subinstance subI[i′, j′]. In this way, the
bird step by step provides you with the oracle’s the optimal t-s path that starts at the root
t and follows the bird’s path down to the base case nodes and on to node s.

Connection to the LeveledGraph Algorithm: Recall that when solving LeveledGraph us-
ing dynamic programming, there is a subinstance for every node subI[i, j] asking for the best
path from s to this node subI[i, j]. The bird then tells you the last edge to take in this path,
i.e. the edge from some k = subI[i′, j′] to our last node subI[i, j].

G as the Graph of Life:

Loop Invariants: Remember Jeff’s religion about loop invariants. They are NOT actions but
static pictures of what is true at this instance in time. Then the code/action within the loop
takes you from one such assertion/invariant to another.

DFA Automata: If you took EECS2001 from Jeff, he had religion there too. Each state in an
automata (DFA) also specifies one such point in time. Jeff said to label this state with every
thing the automata knows to be true at this flash in time (everything Pooh bear writes on
his finite sized black board.) If the number of states grows with the size of the input, then it
is not a “finite” automata and if you have a little bird than it might not be a “deterministic”
one, but the idea of a state will be the same. The edges between these states in this automata
represent action that take it from one such state to another.

Path of Life: What is life but a path through this automata graph, i.e. a sequence of snapshot
states and/or the sequence of actions/happening that move your from one state to another.
Some but not all of these states will happen to you. What “cause/decides” which edge to
follow next is the whole debate of free will vs determinism vs divine intervention. But but
in an optimal world, for each state that you might be in, the little bird’s advice tells you the
last action k you took to get to this state.

Read the Input IP and Produce the Solution SP : As you follow a path from start state
s to the destination state t, your over all task will be to read the input IP and produce
the solution SP . As such, each edge 〈state[i, j], state[i′, j′]〉 our graph G needs to be associ-
ated/labeled with following information.

States: Clearly the edge is identified with the states 〈state[i, j] and state[i′, j′] that this edge
goes between.

Action: What action needed to take place for this change of state to occur.

Part of Input IP : Which part of the input is being read during this action.

Part of Solution SP : There needs to be a bijection SP = SolutionMap(SLG) between the
solution to these two problems. Here SLG is a path through your the leveled graph G.
Each such path needs to be associated with a solution SP (what ever that looks like) to

6



the problem P . This solution SP needs to be read off the edges of this path SLG. Hence,
each edge must be labeled with a small part of this solution SP .

Incremental Cost: Each edge needs to be labeled with a weight. The cost/value of a
solution/path SLG will be the sum of the weights along this path. So the weight of the
edge will be the incremental cost/value of the sub-solution for state[i, j] and that for
state[i′, j′].

Forgetting: The running time of your algorithm will depend on the number of edges (and nodes)
of the graph G. Each node/state is labeled with every thing you know when in that state.
Knowing a “lot” means that there are lots of different possibilities of what you may have
known. Hence, there needs to be lots of states. So the goal is to forget any information
that you don’t need to continue on. Suppose you a front line worker so know every detail
of everything that has ever happened. You need to tell your boss just enough information
so that she can make an informed decision about what to do next. Each state state[i, j] is
labeled with this information. Specifically, 〈i, j〉 informs the boss of what he needs to know.

Cutting Task Into Two Independent Tastk: Xxxxxxxx

Examples:

Knapsack: I am walking down an isle of objects 〈obj1, . . . , objn〉 and my life goal is put an
optimal subset of the objects into my knapsack. When I am in state state[i, j], I have
already walked past the objects 〈obj1, . . . , obji〉 and have put a (hopefully optimal) subset
of them into my knapsack with the total volume filled so far being at most j. Which such
subset I have, depends on the path of actions I took to get here. As I walk past object
obji+1, I take one of two following possible actions. With action k = yes, I put obji+1

into my knapsack increasing the volume j filed so far by the volume of this object. The
weight of this action/edge is the value of this object. With action k = no, I do not put
it in. The weight of this action/edge zero. Our goal is to get from state s = state[0, 0] to
t = state[n, V ] with the maximum weighted path.

Longest Common Subsequence: My life goal is to build a longest common subsequence
of the two strings 〈x1, . . . , xn〉 and 〈y1, . . . , ym〉. When I am in state state[i, j], I have
already moved my first string’s courser past 〈x1, . . . , xi〉, my second past 〈y1, . . . , yj〉, and
I hold a (hopefully longest) common subsequence LCS of what I have moved past. Which
such LCS I hold depends on the path of actions I took to get here. When xi+1 6= yj+1,
I cannot change my LCS, but my action either moves my first courser past xi+1 or my
second past yj+1. These actions are denoted k =↓ and → because this can be viewed as
the direction I am traveling through this matrix of states. The weight of this action/edge
is zero. When xi+1 = yj+1, I extend my LCS with this new character and move both
coursers past it. This action is denoted k =ց. The weight of this action/edge is one. Our
goal is to get from state s = state[0, 0] to t = state[n,m] with the maximum weighted
path.

Printing Neatly: My life goal is to print a sequence of words neatly. When I am in state
state[i], I have already printed the first i words completing some number of lines. How
I printed them depends on the path of actions I took to get here. My next action is to
decide some number of words k and to print them on the next line. The weight of this
action/edge is the cube of the number of blanks on the end of this new line. Our goal is
to get from state s = state[0] to t = state[n] with the minimum weighted path.

Same: Note that subinstance subI[i, j] and state state[i, j] are effectively the same and that these
define the SAME graph G. It is this graph that you are giving to the oracle.

Edge Length: Consider whether the average length of the edges in G be short or be long. Short edges
mean that your path from birth to death will traverse lots and lots of short actions. However, we
don’t care how many edges are in the optimal path. Running time is not the work of traversing
this path. but the work of searching for it. The search time depends on the total number of
possible edges possible that we need to search amongst, whether or not taken.

Long edges are scarier because you don’t really know where in the future they are leaping to. The

7



further you go, the more places you can get to, and hence the more edges there are to search and
hence the longer this searching takes.

The little bird tells you either the next edge or the last edge that you should take in an optimal
path. Because the algorithm must try all the possible bird answers, you want the number to be
small. All the edges go from the start node s all the way to the destination t, then you would
need a separate edge for each of the exponential number of solutions to IP . This would be too
many.

There should be an edge in your graph G for every “atomic” action that takes you from one state
to another. Non-atomic actions are not needed because they can be broken into a sequence of
atomic actions.

Running Time: The running time of our leveled graph dynamic programming oracle is the number of
subinstances times the number of edges deg(u) coming into node u. To be more accurate the time
is

∑
u deg(u). This equals the number of edges in the graph. Hence, like depth first and breadth

first search, this the running time is linear in the number of edges. For this reason, it does not
matter how many nodes are the graph ILG that you give the oracle OracleLG(ILG) who is solving
LeveledGraphLG (G, s, t) for you. Give her as many nodes as you like. However, truly try to give her
as few edges as possible. Carefully consider every edge you are adding to the graph G and make sure
that it truly makes a difference to the result.

Can’t Reduce: Parsing is a dynamic programming algorithm that cant easily be reduces in this way because
it recurses on the left and the right sub-tree.

8


