
CSE 3101 Design and Analysis of Algorithms
Meta Steps for Unit 4

Jeff Edmonds

This contains the most important concepts in this unit. You will not be able to pass this course without
knowing and understanding these. The steps provided must be followed on all assignments and tests in this
course. Do not believe that because you know the material, you can answer the questions in your own way.
Though this material is necessary, it does not contain everything that you need. You must read the book,
go to class, review the slides, and ask lots of question.

Chapter 16: Greedy Algorithms

When providing a greedy algorithm and its proof of correctness, the following are all the paragraphs that
should be included, their headings, and what they should contain.

Carefully read the full description of the steps on pg 225 of HTA. Sorry, in the book At is not defined.
optSLI is used instead of St−1, optSours instead of St, and consistent instead of extends.

Specifications: This is likely part of the question and hence does not need to be written. However, before
writing anything consider: What are the objects in the instance? What decisions need to be made
about each such object in order to produce a solution. When does such a sequence of decisions make a
valid/invalid solution? What is the measure according to which the solution is optimal? When writing
your answer be sure to use the details of the question at hand.

The Greedy Choice: Each iteration the algorithm grabs the object which according to some simple cri-
teria, seems to be the “best” (or “worst”) from amongst the unconsidered objects in the instance.
Describe this criteria. Is it a fixed or an adaptive decision, i.e. does it depend on what
objects have been seen already? The algorithm then makes an irrevocable decision about this
object. How is this decision made?

Hint: Usually the decision made is simply to commit to the next object unless it creates conflicts with
the objects that the algorithm has already been committed to.

Example: With MST, the algorithm chooses the edge with the smallest weight. It decides to commit
to this edge if it does not create a cycle with the previously committed to edges.

At: Let At denote the choices made by the algorithm during the first t time steps. See Figure 1.

Example: With MST, At specifies for each of the t edge with the smallest weight whether it was
committed to or rejected.

St Extends At: For St to be solution for our instance, it must make a decision for every object in our
instance. We say that St is a solution that extends At, if for the objects that algorithm has already
made a decision about, St makes the same decision, i.e. ∀ object Obj ∈ instance I, if At(Obj) 6=
undefined, then St(Obj) = At(Obj).

Example: With MST, St specifies a full spanning tree of the graph.

The Loop Invariant: We have not gone wrong. There is at least one valid optimal solution St that extends
the choices At made so far by the algorithm.
(If the problem is such that an instance may have no valid solutions, then the loop invariant needs to
be modified to: “ If our instance does have a valid solution, then there is at least one valid optimal
solution St that extends the choices At made so far by the algorithm.)

Initially (〈pre〉 → 〈LI〉): Initially no choices have been made (i.e. A0 = ∅) and hence all optimal solutions
S0 extend these choices.

Maintaining the Loop Invariant (〈LIt−1〉 & not 〈exit〉 & codeloop → 〈LIt〉): Consider an arbi-
trary iteration.

Fly in From Mars: The algorithm has iterated t−1 times making decisions At−1 about the first t−1
objects and is now at the top of the loop. If useful state or at least think about the types
of decisions the algorithm makes. All that we know is that the loop invariant is true and the
exit condition is not.

St−1: The loop invariant states that there is at least one optimal solution that extends the choices
made by the algorithm before this iteration. Let St−1 denote one such solution. (Note that this
is a full solution and as such specifies a decision about each object in the instance.) If you like
have a fairy god mother hold it.

Taking a Step: Let Objt denote the next “best” object chosen by the algorithm during the tth iter-
ation. Denote At = At−1+ decision made about Objt.

Example: With MST, there are two cases. First suppose that the algorithm commits to the next
best edge Objt = 〈u, v〉 because it does not create a cycle with the previously committed to edges.

Instructions for Modifying St−1: Give the prover’s detailed instructions on how the fairy god-
mother should modify St−1. We will use St to denote what she constructs.

Warning: Be sure you give a full description of how St is constructed before you try proving
anything about it. When marking, this is a first thing I look at.

Perhaps St is Already Consistent: St−1 is already consistent with the first t−1 decisions
made by the algorithm. If St−1 happens to be consistent with the decision At the algorithm
made about Objt, then we are done. Sometimes because of the decisions already made by the
algorithm, the algorithm is forced to make this decision about Objt. Usually, this occurs when
the algorithm’s instructions are to commit to taking Objt unless it can’t because Objt “conflicts”
with the previous decisions made by the algorithm. In such a case, if the algorithm rejected Objt,
then we know it was forced to. Such forced decision are good for the prover, because we know
that because the fairy godmother has made the same first t−1 decisions, that she too is forced to
make this same decision about Objt.

Making St Consistent: If the decision the fairy godmother has made about Objt is different
than At, then the first modification the prover must tell the fairy godmother is to change this
decision, namely S′

t
= St−1+ At’s decision made about Objt. For example, if the algorithm

committed to adding Objt and she did not, then get her to add it.

Check for and Fix Any Conflict: We know that St−1 is a valid solution as it is. Changing the
decision made about Objt most likely makes it no longer valid. Find and describe some object
Obj′ in St−1 (but not in At−1) that ”conflicts” with this changed decision about Objt and describe
a way of changing the decision made by the fairy godmother about Obj′ so that the solution St

is made to be again valid. Define St to be the new solution St = St−1+ At’s decision made about
Objt+ the prover’s new decision about Obj′. Maybe the decision about more than one object
needs to be changed. The book uses the notation Sours instead of St because it is the prover who
creates the new solution. However, people got confused, thinking that this is the solution created
by the algorithm.

The Fairy Godmother’s Decisions are not Ordered: Do not say “Add object Objt that the
algorithm took next and delete the object Obj′

t
that the fairy godmother took next.” Unlike the

algorithm, the fairy godmother does not make decisions about the objects in any particular order.
Hence, it is meaningless to say, “Let Obj′

t
be the object that the fairy godmother considered at

time t.” Because the algorithm makes a decision about an object each time step, we can define
Objt to be the one it makes a decision about at time t. Yes, the fairy godmother has made a
decision the objects Obj1, Obj2, . . . , Objt−1 and in fact made the same decision about these that
that algorithm did. Yes, she made a decision about Objt and if fact about about every object in
the input. This does not mean that there is an object she decided about “next”. Note, we might
use the notation Obj′

t
instead of Obj′, but this is because this is the object that you as the prover

choose to change at time t.

Example: For MST, if St−1 already contains the edge Objt = 〈u, v〉 added by the algorithm then
we are done. Otherwise, because St−1 spans the graph without cycles, it must contain some other
unique path from u to v. The algorithm can’t have already committed to all the edges in this

2

path or adding 〈u, v〉 would create a cycle. The algorithm can’t have already rejected an edge
in this path or else for consistency St−1 would have rejected it too. Let Obj′

t
= 〈u′, v′〉 be some

edge in this path from u to v in St−1 for which no decision has been yet by the algorithm. Let
St = St−1 + 〈u, v〉 − 〈u′, v′〉.

ProvingSt is a Valid Solution: By the loop invariant, St−1 is a valid solution. (i.e. repeat what
it means to be valid.) The prover made sure that his modifications did not make it invalid.
The changes may temporarily have made it invalid, but all of these problem were fixed. Add a
few sentences. Hence, St is a valid solution.

Warning: Do not use the word “valid” without defining it. Let me know that you have read the
question. What does it mean for this problem for a solution to be valid? Careful. What needs to
be proved to prove that everything about St is valid?

Example: With MST, we must prove that St is acyclic and spans the graph. Even if you can’t
get the full proof be sure to minimally state what it is that needs to be proved.

Adding 〈u, v〉 created one cycle with the unique path in St−1 from u to v, but we broke this cycle
by removing Obj′

t
= 〈u′, v′〉. Hence, St is acyclic as was St−1. Because St−1 spans the graph, it

has a path from node x to node y. The path from x to y in St may have to go the other way
around the cycle that was changed. A picture would help. Hence, St is acyclic.

Proving St Extends At: By the loop invariant St−1 extends At−1. The prover made sure that his
modifications did not change any of these decisions and changed St−1’s decision about Objt. Add
a few sentences. Hence, St extends both with earlier decisions made by algorithm and this
most recent decision, i.e. extends At.

Warning: Do not use the word “extends” without defining it. Let me know that you have read
the question. What decisions did the Algorithm make before, that we know St−1 extends, and
how are you going to prove that St is still consistent with these? What decision did the algorithm
just make and how are you going to prove that St is now consistent with it?

Example: For MST, we were careful that the only edge Obj′
t
= 〈u′, v′〉 removed from St−1 had not

preciously been committed to by the algorithm and we were careful to add the edge Objt = 〈u, v〉
just committed to by the algorithm.

ProvingSt is an Optimal Solution: By the loop invariant, St−1 is one of the optimal solutions for
this instance. The prover made sure that his modifications did not make St worse than St−1.
Add a few sentences. Hence, St is an optimal solution.

Warning: Again let me know that you have read the question. What does it mean for this problem
for a solution to be optimal? i.e. what measure of success is minimized or maximums. What do
you need to prove that St is at least as good as St−1? No need to waist your efforts or insult the
fairy god mother by mentioning that in some cases St is in fact better than St−1.

Example: For MST, Obj′
t
= 〈u′, v′〉 is defined to be some edge for which no decision has been yet

by the algorithm. The algorithm sorted the edges by weight and is currently deciding about edge
Objt = 〈u, v〉. Hence the weight of 〈u, v〉 is less than or equal to that of 〈u′, v′〉 and hence the
weight of St is less than or equal to that of St−1.

→ 〈LIt〉: Because St witnesses the fact that there is at least one optimal solution that extends At,
we know that the loop invariant has been maintained.

Second Case: With MST, now suppose the the algorithm rejects the next best edge Objt = 〈u, v〉
because it creates a cycle with the previously committed to edges. In this case, the god mother
must have the same the previously committed to edges and hence also can’t take 〈u, v〉. Let
St = St−1.

Exiting Loop (〈LI〉 & 〈exit〉 → 〈post〉): By the exit condition the algorithm has made a decision about
every object in the instance. Hence, the algorithm has a full solution. By the loop invariant, this extends
an optimal valid solution. Hence, the algorithm must have an optimal valid solution.

3

Commit
Obj 6

Reject
Obj 3Obj 9

CommitCommit
Obj 5 Obj 7

Reject

Obj 4
Commit

Reject
Obj 1

Obj 2
Commit

Obj 8
Commit

Commit
Obj 4

Obj 1
Reject

Commit
Obj 2 Obj 6

Reject

Commit
Obj 9 Obj 3

CommitReject
Obj 7Obj 5

Commit
Commit
Obj 8S4

Commit
Obj 9 Obj 3

CommitReject
Obj 7Obj 5

Commit
A4

 ? ?

 ?
 ? ?

Obj 1

Obj 4

Obj 8

Obj 6Obj 2

Commit
Obj 5 Obj 7

Reject Commit
Obj 3Obj 9

Commit
Obj 6

Commit

Obj 2
Commit

Reject
Obj 1

Obj 4
CommitS5 Obj 8

Reject

Commit
Obj 9 Obj 3

CommitReject
Obj 7Obj 5

Commit
A5 Commit

Obj 6

 ? ?

 ?
 ?

Obj 1

Obj 4

Obj 8

Obj 2

Burt Bridge

Figure 1: Here A4 denotes the decisions made by the greedy algorithm during the first four time steps. Based
on its greedy criteria, it chose to look at objects 5, 7, 9, and 3 in the first 4 time steps and to irrevocably
commit to all of these except for object 7. (Note that unlike in the text above, these numbers index the
objects, not the time step that they were chosen.) Irrevocably committing to object 3 means that it has
“burnt the bridge” of having any optimal solutions in which object 3 is rejected. The loop invariant assures
us that the algorithm has not burned in this way all of the optimal solutions. Here S4, held by the fairy
godmother is a valid optimal solution that extends the decisions A4 that the algorithm has made so far.
Being a full solution, it makes a decision about every object in the input instance, but being consistent with
the algorithm it also commits to objects 4, 9, and 3 and rejects object 7. What other decisions S4 makes is
unknown to the algorithm and to the prover. In the 5th time step, the algorithm commits to object 6. The
prover gives instructions to the fairy godmother to commit to object 6 as well, if she has not already done
so. Doing this alone makes the solution she is holding either in invalid or of less worth. Hence the prover
also instructions to the fairy godmother to change her commitment to object 8 to a reject. Let S5 denote
what she holds after the changes. The prover then proceeds to prove that S5 is a valid solution, that it is
an extension of A5 that the algorithm has done so far and is optimal.

4

