CSE 3101 Design and Analysis of Algorithms
 Solutions for Practice Test for Unit 6 Reductions and NP-Completeness

Jeff Edmonds

1. What is a computational problem P ? Give two examples.

- Answer: A computational problem P is a function $P(I)$ from each possible finite input I that meets the stated preconditions to the corresponding required output that meets the stated postconditions. (Sometimes there is more than one acceptable output.) A simple problem, given a set of numbers as input, is to output those numbers in sorted order. A much harder problem, given a video taken from outside of a car, is to determine whether the Google driver should turn the car in order to void a child in the road.

2. What is an algorithm A ? When does it solve problem P ?

- Answer: An algorithm A is a finite sequence of instructions (perhaps a Turing Machine, but more likely written in a language like C or Java) that can mechanically be followed. Starting with an input I, it either halts with an answer denoted by $A(I)$ or runs forever denoted by $A(I)=\infty$. We say that algorithm A solves problem P if for every input I meeting the precondition, we have that A halts with the correct answer when given I, namely that $A(I)=P(I)$.

3 . What is the time complexity of an algorithm A ?

- Answer: Informally, the time complexity $\operatorname{Time}_{A}(n)$ of an algorithm A is a function from the amount of work needed for an adversary to present an input I to the amount needed for A to complete its computation on this input. Let $\operatorname{Time}(A, I)$ denote the "time" until algorithm A halts on input I. This could be measured in seconds, computer cycles, or lines of code executed because these are the same within a multiplicative constant. The "size" of an instance I, denoted $n=|I|$ formally is the number of bits to describe it, but as well could be the number of ASCII characters or the area of the paper needed because these are all equivalent within a multiplicative constant. (If the input is an integer, do not, however, use its value as its size, because this is exponentially larger.) The time complexity of algorithm A is a defined to be the time needed for the worst case input of size n, namely $\operatorname{Time}_{A}(n)=\max _{|I|=n} \operatorname{Time}(A, I)$.

4. What is the time complexity of a computational problem P ? What are upper and lower bounds on this?

- Answer: The time complexity $\operatorname{Time}_{P}(n)$ of a computational problem P is a defined to be the time complexity $\operatorname{Time}_{A}(n)$ of the fastest algorithm A that solves P. An upper bound $\operatorname{Time}_{P}(n) \leq$ $\operatorname{Time}_{\text {upper }}(n)$ is proved by providing an algorithm A and proving that it solves P in the stated time. A lower bound $\operatorname{Time}_{\text {lower }}(n) \leq \operatorname{Time}_{P}(n)$ is much harder to prove because one must prove that for every algorithm A, there is an input I on which it either runs too slowly or gives the wrong answer.

5. What is constant, linear, polynomial, and exponential time? Practically why does it matter? What are these times when $c=2$ seconds and $n=150$?

- Answer: A running time is said to be constant, denoted $\Theta(1)$, if it is bounded between some two real positive numbers c_{1} and c_{2} for all sufficiently large values of n. It is said to be linear, denoted $\Theta(n)$, if bounded between $c_{1} n$ and $c_{2} n$; polynomial, denoted $n^{\Theta(1)}$, if between $n^{c_{1}}$ and $n^{c_{2}}$; and exponential, denoted $2^{\Theta(n)}$, if between $2^{c_{1} n}$ and $2^{c_{2} n}$. It is important practically because if $c_{2}=2$ seconds and $n=150$, then the times are 2 seconds for constant, 5 minutes for linear, 6 hours for polynomial, and 10^{82} years for the exponential. If the input is the size of DNA, then the algorithm really needs to be linear. Otherwise, we say that an algorithm is practical if it runs in polynomial time.
- Answer: A computational problem takes as input some instance I. Each such instance has a huge (likely exponential) set of possible solutions S. Each solution has well specified criteria for being valid and has a cost $\operatorname{cost}(I, S)$. Given instance I, the goal is to find a valid solution of optimal value, i.e. maximum or minimum.

7. Give examples of optimization problems studied in class that have polynomial time algorithms. Give one for each key type of algorithm covered. Give a real world application.

- Answer:
(a) Given a weighted graph and nodes s and t, find a shortest path. Dijkstra's Algorithm solves this in $\Theta(E \log (E)$ time, where E is the number of edges. This is used by Google to find the shortest path from my current location to my destination.
(b) Given a network find a min flow (or a max cut). This is solved using Primal Dual Hill Climbing (Ford Fulkerson or Edmonds-Karp Algorithms). This is used to route the shipments of a single product from the single factory to the single store along a network of highways. One can also consider the case when there are multiple goods, factories, and stores.
(c) Linear programing requires optimizing a linear equation subject to a set of linear inequalities. Primal-Dual Simplex methods are exponential time in theory and poly-time in practice. The Elliptical method is poly-time in theory and poor in practice. It can be used to know what to put into a hotdog today in order to minimize its cost.
(d) Minimum number of coins to make amount and Minimum Spanning Tree or Scheduling rooms are solved by Greedy Algorithms. The first is used to keep your pocket light. The second to minimize the cost of setting up power or internet wires between every home. The third is to know how to best schedule customers into your event room.
(e) Shortest Edit Distance and Scheduling rooms with weights are solved using Dynamic Programming. The first might be used to know how closely related the DNA of two animals are. The second can again be used schedule your event room, but when the customers are willing to pay different amounts.

8. How do you make an optimization problem into a decision problem? Give an example. What is a witness?

- Answer: For each instance, the answer is either yes or no. It is a yes instance if and only it has a valid solution (that is sufficiently good). For example, "Does network G have valid flow with value at least 17 ?" This solution is sometimes referred to as a witness or even as a proof because it witnesses/proves that the instance is a yes instance.

9. What does it mean for a decision problem P to be in NP (Non-Deterministic Polynomial Time)? (This was defined by Jeff's dad Jack Edmonds. (Do this without defining or referring to Non-Deterministic Turing Machines).

- Answer: There is a poly-time algorithm $\operatorname{Valid}(I, S)$ that given an instance I and a solution S, tests whether S is a valid solution for I. A key point is that the algorithm $\operatorname{Valid}(I, S)$ runs in polynomial time in the size of the instance I.
Formally we say that $P \in N P$ iff \exists algorithm Valid and constant c such that $\forall I, I \in P$ iff $\exists S \operatorname{Valid}(I, S)=$ yes and $\forall I, S$, $\operatorname{Time}(\operatorname{Valid}(I, S)) \leq|I|^{c}$.

10. Your boss gives you an instance I of an NP problem that by good luck happens to be a Yes instance. You are blessed to have a powerful fairy god mother to help you. How do you convince your boss that the answer for his instance is Yes without him knowing or being affected by your fairy god mother? Similarly, how would you convince your boss that the answer for his instance is No?

- Answer: The instance is a yes instance iff it has a solution that is easy to check. She can simply give you such a valid solution S. You give this to your boss. Your boss then checks its validity with $\operatorname{Valid}(I, S)$. Note your boss can do this because it runs in polynomial time in the size of his instance I.
If it is a no instance, then (unless the problem is also in $c o-N P$), it does not have a solution/witness to help you and/or your boss.

11. For an NP problem, is there a limit on the size of a solution for I and/or on the number of possible such solutions? Why?

- Answer: Yes. The algorithm $\operatorname{Valid}(I, S)$ must runs in polynomial time in the size of the instance I. For Valid to even look at the solution S, its size must also be polynomial time in the size of the instance I, i.e. there is a constant c such that for all instances I, the size of the solution S is at most $|I|^{c}$ bits long. Hence the number of such solutions can be at most $2^{|I|^{c}}$.

12. What is the brute force algorithm for P and how long does it take?

- Answer: The algorithm checks all possible solutions S. This takes at most $2^{|I|^{c}}$ time because this is the number of such solutions.

13. What is the famous problem $P=N P$?

- Answer: The question is whether every problem in $N P$ can be solved in polynomial time. The general belief is no, that many of them take exponential time.

14. What does it mean for a decision problem P to be $N P$-Hard or $N P$-Complete? What does this say about the time complexity of such a problem?

- Answer: A problem P is NP-Hard iff it is as hard as any problem in NP, i.e. $\forall P^{\prime} \in N P, P^{\prime} \leq P$. Cook did this for $S A T$. Hence a problem P is NP-Hard iff $S A T \leq P$. Being NP-hard means that if there was a polynomial algorithm for P then there would be one for every problem in NP and hence $P=N P$. If, as general believed, $P \neq N P$, then such problems do not have polynomial time algorithms. A problem P is NP-Complete iff it is NP-Hard and is in NP.

15. How is this useful to you in the real world.

- Answer: If your boss gives you a brand new problem and you are able to prove that it is NPComplete, then you know that you should not expect to find a poly time algorithm that works for every instance. You are better off trying to find some heuristic that gives an ok answer for most instances.

16. Which problem did Cook at U. of Toronto. prove was NP-Complete? Give some other examples.

- Answer: Cook at U. of Toronto. was the first to prove that a problem was NP-Complete. His first such problem was Circuit Satisfiability which when given a circuit as an instance wants to know if there exists a satisfying assignment.
Many important problems that industry would love to solve are also NP-complete. Some of the classic ones are knowing whether a graph has a large clique; colouring the nodes of a graph so that each edge is bi-chromatic; and scheduling courses in a way that minimizes conflicts.

17. In practice, what is done to know whether the answer for the instance is yes or no.

- Answer: For some problems, there are poly-time algorithms that are guaranteed to give a solutions that approximately optimal. For example, dynamic programming can find a solution for the knapsack problem whose value is within a multiplicative factor of $1+\epsilon$ of the optimal value, while the time required is only $\Theta\left(n^{2} / \epsilon\right)$.

Alternatively there are many heuristics for the problems that sometimes gives a good enough answers fast enough for large instances of the problem. For example, David-Putnam recursive backtracking can often solve $S A T$ problems quickly.
18. Sketch the Venn-diagram of $P, N P, N P$ - complete, $C o-N P, N P-C o m p l e t e$, Exp.

- Answer: $P \subseteq N P \cap C o-N P . N P \cup C o-N P \subseteq \operatorname{Exp} . N P-C o m p l e t e$ is at the top of the $N P$ circle, above P.

19. Recall in 2001 learning that problems are computable/decidable if there is a TM that stops on every instance I with the correct answer. What was the definition of a problem being acceptable/recognizable? How is this similar to the definition of NP. How is it different? How big can the solution be? Explain how the Halting Problem fits this definition.

- Answer: You likely learned that a problem is acceptable/recognizable iff there is a TM that stops on every yes instance I with the correct answer and either runs forever or says no on every no instance. This definition is equivalent to that for NP accept Valid that does not have to run in poly time. Namely, there is a computable algorithm $\operatorname{Valid}(I, S)$ that given an instance I and a solution S, tests whether S is a valid solution for I. The algorithm in the first definition simply searches for such an S and finds one iff there is one. There is no bound on the size of the solution S. An instance $\langle M, I\rangle$ to the Halting Problem is a yes instance iff it M is a TM that halts on instance I. A solution for instance $\langle M, I\rangle$ is the description of a halting computation of M on I.

20. How do you prove that one computational problem is at least as hard as another? $P_{1} \leq P_{2}$. What is an oracle? Note that this is used in the definition of NP-Hard.

- Answer: It is hard to prove that P_{2} is hard. It is easier to prove that P_{1} is "easier" P_{2}. Write an algorithm for P_{1} using an algorithm for P_{2} as a subroutine. We sometime refer to the algorithm for P_{2} as an oracle (Like a burning bush on top of a mountain or that at Delphi).

21. Outline the basic code for $A l g_{a l g}$ solving $P_{\text {alg }}$ using the supposed algorithm $A l g_{\text {oracle }}$ supposedly solving $P_{\text {oracle }}$ as a subroutine. If $A l g_{\text {oracle }}$ is kind and also provides a valid solution $S_{\text {oracle }}$ for its instance $I_{\text {oracle }}$, then you should provide a valid solution $S_{a l g}$ for your instance $I_{a l g}$.

- Answer:

```
algorithm \(A l g_{a l g}\left(I_{\text {alg }}\right)\)
\(\langle\boldsymbol{p r e}-\) cond \(\rangle: I_{\text {alg }}\) is an instance of \(P_{\text {alg }}\).
\(\langle\boldsymbol{p o s t}-\boldsymbol{c o n d}\rangle\) : Determine whether \(I_{a l g}\) has a solution \(S_{a l g}\) and if so returns it.
```

begin
$I_{\text {oracle }}=$ InstanceMap $\left(I_{\text {alg }}\right)$
$\left\langle\right.$ ans $\left._{\text {oracle }}, S_{\text {oracle }}\right\rangle=A l g_{\text {oracle }}\left(I_{\text {oracle }}\right)$
if $\left(a n s_{\text {oracle }}=Y e s\right)$ then
$a n s_{a l g}=Y e s$
$S_{\text {alg }}=$ SolutionMap $\left(S_{\text {oracle }}\right)$
else
$a n s_{a l g}=N o$
$S_{a l g}=n i l$
end if
return $\left(\left\langle a n s_{a l g}, S_{a l g}\right\rangle\right)$
end algorithm
22. What steps do you have to take to prove that this reduction is correct?

- Answer: We have to prove that $A l g_{a l g}$ works if $A l g_{\text {oracle }}$ works. For this we prove
(a) Given an instance $I_{\text {alg }}$, InstanceMap $\left(I_{\text {alg }}\right)$ maps this to a valid instance $I_{\text {oracle }}$.
(b) If $S_{\text {oracle }}$ is a solution for $I_{\text {oracle }}$ than $S_{\text {alg }}=\operatorname{SolutionMap}\left(S_{\text {oracle }}\right)$ is a solution for $I_{\text {alg }}$ whose cost is just as good.
(c) If $S_{\text {alg }}$ is a solution for $I_{\text {alg }}$ than $S_{\text {oracle }}=\operatorname{ReverseSolutionMap}\left(S_{\text {alg }}\right)$ is a solution for $I_{\text {oracle }}$ whose cost is just as good.

23. Give two purposes of reductions.

- Answer:
(a) Designing new algorithms
(b) Arguing that a problem is hard or easy.
(c) Identifying equivalence classes of problems.

24. Name two reductions done this term (using these two purposes).

- Answer: We got an algorithm for the Boy \& Girls Marriage given an algorithm for Network Flows. We got an algorithm for Circuit Satisfiability using one for 3-Colouring. But there in likely not one for Circuit Satisfiability and hence not likely one for Colouring.

