
CSE 3101 Design and Analysis of Algorithms

Solutions for Practice Test for Unit 6
Reductions and NP-Completeness

Jeff Edmonds

1. What is a computational problem P? Give two examples.

• Answer: A computational problem P is a function P (I) from each possible finite input I that
meets the stated preconditions to the corresponding required output that meets the stated post-
conditions. (Sometimes there is more than one acceptable output.) A simple problem, given a set
of numbers as input, is to output those numbers in sorted order. A much harder problem, given
a video taken from outside of a car, is to determine whether the Google driver should turn the
car in order to void a child in the road.

2. What is an algorithm A? When does it solve problem P?

• Answer: An algorithm A is a finite sequence of instructions (perhaps a Turing Machine, but more
likely written in a language like C or Java) that can mechanically be followed. Starting with an
input I, it either halts with an answer denoted by A(I) or runs forever denoted by A(I) = ∞.
We say that algorithm A solves problem P if for every input I meeting the precondition, we have
that A halts with the correct answer when given I, namely that A(I) = P (I).

3. What is the time complexity of an algorithm A?

• Answer: Informally, the time complexity T imeA(n) of an algorithm A is a function from the
amount of work needed for an adversary to present an input I to the amount needed for A to
complete its computation on this input. Let T ime(A, I) denote the “time” until algorithm A
halts on input I. This could be measured in seconds, computer cycles, or lines of code executed
because these are the same within a multiplicative constant. The “size” of an instance I, denoted
n = |I| formally is the number of bits to describe it, but as well could be the number of ASCII
characters or the area of the paper needed because these are all equivalent within a multiplicative
constant. (If the input is an integer, do not, however, use its value as its size, because this is
exponentially larger.) The time complexity of algorithm A is a defined to be the time needed for
the worst case input of size n, namely T imeA(n) = max|I|=n T ime(A, I).

4. What is the time complexity of a computational problem P? What are upper and lower bounds on
this?

• Answer: The time complexity T imeP (n) of a computational problem P is a defined to be the time
complexity T imeA(n) of the fastest algorithm A that solves P . An upper bound T imeP (n) ≤
T imeupper(n) is proved by providing an algorithm A and proving that it solves P in the stated
time. A lower bound T imelower(n) ≤ T imeP (n) is much harder to prove because one must prove
that for every algorithm A, there is an input I on which it either runs too slowly or gives the
wrong answer.

5. What is constant, linear, polynomial, and exponential time? Practically why does it matter? What
are these times when c = 2 seconds and n = 150?

• Answer: A running time is said to be constant, denoted Θ(1), if it is bounded between some
two real positive numbers c1 and c2 for all sufficiently large values of n. It is said to be linear,
denoted Θ(n), if bounded between c1n and c2n; polynomial, denoted nΘ(1), if between nc1 and
nc2 ; and exponential, denoted 2Θ(n), if between 2c1n and 2c2n. It is important practically because
if c2 = 2 seconds and n = 150, then the times are 2 seconds for constant, 5 minutes for linear, 6
hours for polynomial, and 1082 years for the exponential. If the input is the size of DNA, then
the algorithm really needs to be linear. Otherwise, we say that an algorithm is practical if it runs
in polynomial time.

6. What is an Optimization Problem P?

• Answer: A computational problem takes as input some instance I. Each such instance has a huge
(likely exponential) set of possible solutions S. Each solution has well specified criteria for being
valid and has a cost cost(I, S). Given instance I, the goal is to find a valid solution of optimal
value, i.e. maximum or minimum.

7. Give examples of optimization problems studied in class that have polynomial time algorithms. Give
one for each key type of algorithm covered. Give a real world application.

• Answer:

(a) Given a weighted graph and nodes s and t, find a shortest path. Dijkstra’s Algorithm solves
this in Θ(E log(E) time, where E is the number of edges. This is used by Google to find the
shortest path from my current location to my destination.

(b) Given a network find a min flow (or a max cut). This is solved using Primal Dual Hill Climbing
(Ford Fulkerson or Edmonds-Karp Algorithms). This is used to route the shipments of a single
product from the single factory to the single store along a network of highways. One can also
consider the case when there are multiple goods, factories, and stores.

(c) Linear programing requires optimizing a linear equation subject to a set of linear inequalities.
Primal-Dual Simplex methods are exponential time in theory and poly-time in practice. The
Elliptical method is poly-time in theory and poor in practice. It can be used to know what
to put into a hotdog today in order to minimize its cost.

(d) Minimum number of coins to make amount and Minimum Spanning Tree or Scheduling rooms
are solved by Greedy Algorithms. The first is used to keep your pocket light. The second to
minimize the cost of setting up power or internet wires between every home. The third is to
know how to best schedule customers into your event room.

(e) Shortest Edit Distance and Scheduling rooms with weights are solved using Dynamic Pro-
gramming. The first might be used to know how closely related the DNA of two animals are.
The second can again be used schedule your event room, but when the customers are willing
to pay different amounts.

8. How do you make an optimization problem into a decision problem? Give an example. What is a
witness?

• Answer: For each instance, the answer is either yes or no. It is a yes instance if and only it has
a valid solution (that is sufficiently good). For example, “Does network G have valid flow with
value at least 17?” This solution is sometimes referred to as a witness or even as a proof because
it witnesses/proves that the instance is a yes instance.

9. What does it mean for a decision problem P to be in NP (Non-Deterministic Polynomial Time)? (This
was defined by Jeff’s dad Jack Edmonds. (Do this without defining or referring to Non-Deterministic
Turing Machines).

• Answer: There is a poly-time algorithm V alid(I, S) that given an instance I and a solution S,
tests whether S is a valid solution for I. A key point is that the algorithm V alid(I, S) runs in
polynomial time in the size of the instance I.
Formally we say that P ∈ NP iff ∃ algorithm V alid and constant c such that ∀I, I ∈ P iff
∃S V alid(I, S) = yes and ∀I, S, T ime(V alid(I, S)) ≤ |I|c.

10. Your boss gives you an instance I of an NP problem that by good luck happens to be a Yes instance.
You are blessed to have a powerful fairy god mother to help you. How do you convince your boss that
the answer for his instance is Yes without him knowing or being affected by your fairy god mother?
Similarly, how would you convince your boss that the answer for his instance is No?

2

• Answer: The instance is a yes instance iff it has a solution that is easy to check. She can simply
give you such a valid solution S. You give this to your boss. Your boss then checks its validity
with V alid(I, S). Note your boss can do this because it runs in polynomial time in the size of his
instance I.
If it is a no instance, then (unless the problem is also in co-NP), it does not have a solution/witness
to help you and/or your boss.

11. For an NP problem, is there a limit on the size of a solution for I and/or on the number of possible
such solutions? Why?

• Answer: Yes. The algorithm V alid(I, S) must runs in polynomial time in the size of the instance
I. For V alid to even look at the solution S, its size must also be polynomial time in the size of
the instance I, i.e. there is a constant c such that for all instances I, the size of the solution S is
at most |I|c bits long. Hence the number of such solutions can be at most 2|I|

c

.

12. What is the brute force algorithm for P and how long does it take?

• Answer: The algorithm checks all possible solutions S. This takes at most 2|I|
c

time because this
is the number of such solutions.

13. What is the famous problem P = NP?

• Answer: The question is whether every problem in NP can be solved in polynomial time. The
general belief is no, that many of them take exponential time.

14. What does it mean for a decision problem P to be NP-Hard or NP-Complete? What does this say
about the time complexity of such a problem?

• Answer: A problem P is NP-Hard iff it is as hard as any problem in NP, i.e. ∀P ′ ∈ NP, P ′ ≤ P .
Cook did this for SAT . Hence a problem P is NP-Hard iff SAT ≤ P . Being NP-hard means that
if there was a polynomial algorithm for P then there would be one for every problem in NP and
hence P = NP . If, as general believed, P 6= NP , then such problems do not have polynomial
time algorithms. A problem P is NP-Complete iff it is NP-Hard and is in NP.

15. How is this useful to you in the real world.

• Answer: If your boss gives you a brand new problem and you are able to prove that it is NP-
Complete, then you know that you should not expect to find a poly time algorithm that works
for every instance. You are better off trying to find some heuristic that gives an ok answer for
most instances.

16. Which problem did Cook at U. of Toronto. prove was NP-Complete? Give some other examples.

• Answer: Cook at U. of Toronto. was the first to prove that a problem was NP-Complete. His
first such problem was Circuit Satisfiability which when given a circuit as an instance wants to
know if there exists a satisfying assignment.

Many important problems that industry would love to solve are also NP-complete. Some of the
classic ones are knowing whether a graph has a large clique; colouring the nodes of a graph so
that each edge is bi-chromatic; and scheduling courses in a way that minimizes conflicts.

17. In practice, what is done to know whether the answer for the instance is yes or no.

• Answer: For some problems, there are poly-time algorithms that are guaranteed to give a solutions
that approximately optimal. For example, dynamic programming can find a solution for the
knapsack problem whose value is within a multiplicative factor of 1+ ǫ of the optimal value, while
the time required is only Θ(n2/ǫ).

3

Alternatively there are many heuristics for the problems that sometimes gives a good enough
answers fast enough for large instances of the problem. For example, David-Putnam recursive
backtracking can often solve SAT problems quickly.

18. Sketch the Venn-diagram of P , NP , NP − complete, Co−NP , NP − Complete, Exp.

• Answer: P ⊆ NP ∩Co−NP . NP ∪Co−NP ⊆ Exp. NP −Complete is at the top of the NP
circle, above P .

19. Recall in 2001 learning that problems are computable/decidable if there is a TM that stops on every
instance I with the correct answer. What was the definition of a problem being acceptable/recognizable?
How is this similar to the definition of NP. How is it different? How big can the solution be? Explain
how the Halting Problem fits this definition.

• Answer: You likely learned that a problem is acceptable/recognizable iff there is a TM that stops
on every yes instance I with the correct answer and either runs forever or says no on every no
instance. This definition is equivalent to that for NP accept V alid that does not have to run in
poly time. Namely, there is a computable algorithm V alid(I, S) that given an instance I and a
solution S, tests whether S is a valid solution for I. The algorithm in the first definition simply
searches for such an S and finds one iff there is one. There is no bound on the size of the solution
S. An instance 〈M, I〉 to the Halting Problem is a yes instance iff it M is a TM that halts on
instance I. A solution for instance 〈M, I〉 is the description of a halting computation of M on I.

20. How do you prove that one computational problem is at least as hard as another? P1 ≤ P2. What is
an oracle? Note that this is used in the definition of NP-Hard.

• Answer: It is hard to prove that P2 is hard. It is easier to prove that P1 is “easier” P2. Write an
algorithm for P1 using an algorithm for P2 as a subroutine. We sometime refer to the algorithm
for P2 as an oracle (Like a burning bush on top of a mountain or that at Delphi).

21. Outline the basic code for Algalg solving Palg using the supposed algorithm Algoracle supposedly solving
Poracle as a subroutine. If Algoracle is kind and also provides a valid solution Soracle for its instance
Ioracle, then you should provide a valid solution Salg for your instance Ialg.

• Answer:

algorithm Algalg(Ialg)

〈pre−cond〉: Ialg is an instance of Palg.

〈post−cond〉: Determine whether Ialg has a solution Salg and if so returns it.

begin
Ioracle = InstanceMap(Ialg)
〈ansoracle, Soracle〉 = Algoracle(Ioracle)
if(ansoracle = Y es) then

ansalg = Y es
Salg = SolutionMap(Soracle)

else
ansalg = No
Salg = nil

end if
return(〈ansalg, Salg〉)

end algorithm

22. What steps do you have to take to prove that this reduction is correct?

• Answer: We have to prove that Algalg works if Algoracle works. For this we prove

4

(a) Given an instance Ialg, InstanceMap(Ialg) maps this to a valid instance Ioracle.

(b) If Soracle is a solution for Ioracle than Salg = SolutionMap(Soracle) is a solution for Ialg whose
cost is just as good.

(c) If Salg is a solution for Ialg than Soracle = ReverseSolutionMap(Salg) is a solution for Ioracle
whose cost is just as good.

23. Give two purposes of reductions.

• Answer:

(a) Designing new algorithms

(b) Arguing that a problem is hard or easy.

(c) Identifying equivalence classes of problems.

24. Name two reductions done this term (using these two purposes).

• Answer: We got an algorithm for the Boy & Girls Marriage given an algorithm for Network
Flows. We got an algorithm for Circuit Satisfiability using one for 3-Colouring. But there in
likely not one for Circuit Satisfiability and hence not likely one for Colouring.

25. NP-Completeness:

(a) The problem Clause-SAT is given a set of clauses where each clause is the OR of a set of literals
and each literal is either a variable or its negation. The goal is know whether you can set each
variable to true or false so that each clause is satisfied.

The course notes (along with an exercise on 3-SAT), prove that the problems (circuit) SAT, 3-
Colouring, Course Scheduling, Independent Set, and 3-SAT are NP-Complete. In a few sentences,
explain how you know that Clause-SAT is NP-Complete.

• Answer: Clause-SAT is more general that 3-SAT. Hence, if you can solve any instance of
Clause-SAT then you can definitely solve any of 3-SAT. Also being in NP, it follows that
Clause-SAT is NP-Complete.

(b) The problem Card is defined by the following puzzle.
You are given a box and a collection of cards as indicated in the fig-
ure. The box and each card has r rows and two columns of positions
in the same places. The box contains Xs in these positions. In each
card at each of these positions, there is either a hole punched out or
there is not. Each card must be placed in the box either face up or
flipped over left to right. It has a notch at its top which must be
at the top of the box. Consider some row in some card. Suppose
its left position has a hole but its right position does not. Putting
the card in face up covers the right X in the box of this row but not
the left. Putting the card in flipped over covers the left but not the
right. The goal is to cover each and every X in the box. A solution
specifies for each card whether to flip the card or not. A solution is
valid if it covers all the Xs.

X X

XX

X X

XX

XX

X X

XX

X X

XX

Box One side The other side

Prove that Card is NP-Complete by reducing it to Clause-SAT. Be sure to think about each of
the 12 steps. As a huge hint, I do step 5 for you. You are to write up steps 0, 6, and 7. For each
of these have a clear paragraph with pictures.

0) Pcard ∈ NP:

5) InstanceMap: Given an instance IClause−SAT to Clause-SAT consisting of a set of clauses,
we construct as follows an instance Icard = InstanceMap(IClause−SAT) for the card game
consisting of a set of cards. Our box and cards will have one row for each clause. We will have
a card for each variable x. For each clause c, this card for x will have its left hole position
for row c not punched out if x appears positively in c and will have its right hole position for

5

c not punched out if x appears negatively in c. It will have all other hole positions punched
out. We will have one additional card that has all of its left hole positions punched out and
none of its right hole positions punched out.

6) SolutionMap:

7) Valid to Valid:

• Answer:

0) Pcard ∈ NP: Given an instance consisting of a set of cards and a solution consisting of
an orientation of each card, it is easy to determine if every hole position is blocked.

6) SolutionMap: Given a solution Scard for the instance Icard =
InstanceMap(IClause−SAT) consisting of a notflipped/flipped orientation of each
card, we construct as follows a solution SClause−SAT for instance IClause−SAT consisting
of a true/false setting of each variable. First, if in the solution Scard, the additional card
is flipped then we can flip the entire deck of cards over without changing whether all the
hole positions are covered. Hence, without loss of generality assume that in Scard, the
additional card is not flipped. Then for each variable x, set it to true iff its associated
card is notflipped in Scard.

7) Valid to Valid: Assume that Scard is a valid solution, i.e. every hole position is covered.
Our goal is to prove that SClause−SAT is a valid solution, i.e. every clause is satisfied.
Consider some clause c. Because the additional card is not flipped in Scard and every
hole position is covered, we know that there is some variable card x covering the left hole
position for clause c. If this card is not flipped then its left hole position for c must not
be punched. In this case, x is set to true in SClause−SAT and x appears positively in
c. Hence, this clause is satisfied. Alternatively, if this card is flipped then its right hole
position for c must not be punched. In this case, x is set to false in SClause−SAT and x
appears negatively in c. Again, this clause is satisfied. Hence, each clause in SClause−SAT

is satisfied.

(c) Suppose you work for an airplane manufacturing company. Given any detailed specification of a
plane, right down to every curve and nut and bolt, your boss has a way of determining whether
it is a great plane or not. However, he has tried thousands of different specifications and none of
them turn out to be great. He is completely frustrated.

Meanwhile back at home, your son didn’t finish high school, is socially awkward, and is living in
your basement at 31. You blame it on the fact that he is completely addicted to playing video
games. You feel this is only one step better to being a crack addict. One game he plays all the
time is the card flipping puzzle described above. He has a magical ability to instantly put any set
of cards into the box so that all the Xs are covered.

You are are only able to do things described in the course notes (or hinted at in exercises). How
do you get your son a job at work so that he quickly becomes a billionaire?

• Answer: Following your boss’ method, you write a JAVA program that takes as input the
description of plane and outputs whether or not it is great. (Given a fixed number of bits
n to describe the input, it is not too hard to automatically compile this program into an
AND-OR-NOT circuit that does the same thing. The notes describe a way to convert this
circuit into a graph to be 3-Colored. The exercise in the notes hints at how to convert this
into an instance of 3-SAT, which is itself an instance of Clause-SAT. Above we describe how
to convert this into an instance of the Card game. You get your son to magically solve it. You
convert this solution into a solution for the 3-Sat instance, which you convert into a solution
of the graph coloring instance, which you covert into a solution of the circuit problem and
a valid input of the JAVA program. This you translate into a description of a great plane,
which you give your boss. You and your son go on to solving all of the world’s optimization
problems.

26. Consider the following two computational problems and following correspondence between them.

6

Card Puzzle Clause-SAT
Input: A box and cards The and of clauses: Each the or of vars

n cards: Each labeled with var.
and its negation on back

n variables

Each card has m rows m clauses
- card v, jth row, & 1st col: non-hole - var v appears positively in jth clauses
- card v, jth row, & 2nd col: non-hole - var v appears negatively in jth clauses

Solution: Each card flipped or not and put in box Each variable negated or not
Satisfied: Each X has a nonhole of card covering it Each clause has a variable satisfying it

- eg: Flipped card a covers last X - eg: Negated a satisfies last clause
Determine: Ans Yes iff ∃ a satisfying solution Ans Yes iff ∃ a satisfying solution
See more: 4111/ass/06-ass-NP Complete.pdf Q3 2001-60-NP Complete.pptx Quick Re-

duce

Example:
Box Cards Flipped Clauses

X
X
X
X
X

a
©

©
©©
©©
©

b
©
©©

©
©©
©©

c
©©
©
©

©
©

d
©
©

©©
©
©©

e
©©

©
©
©©

©

¬a
©
©©
©©
©©

©

(a or ¬b or d)
(¬a or ¬c or d or e)
(b or ¬c or ¬e)
(c or ¬d)
(¬a or ¬c or e)

and
and
and
and

(a) I spelled out a correspondence between
- an instance of the card puzzle and
- an instance of clause-SAT.
Spell out a similar correspondence between
- a solution of the card puzzle and
- a solution of clause-SAT.

(1 sentences)

• Answer:
A card in a solution of the card puzzle is flipped

iff the corresponding variable in the corresponding solution of clause-SAT is negated.

(b) Is there a correspondence between
- an instance of the card puzzle requiring a Yes and
- the corresponding instance of clause-SAT requiring a Yes?
Explain.

(5 sentences)

• Answer:
For each j and v,
- card v covers the jth X
- iff variable v satisfies the jth clause.
Hence, for each j,
- the jth X is covered
- iff the jth clause is satisfied.
Hence,
- the solution of the card puzzle satisfies the requirement
- iff the corresponding solution of clause-SAT does.
Hence,
- ∃ a satisfying solution for the instance of card puzzle
- iff ∃ a satisfying solution for corresponding instance of clause-SAT.

7

Hence,
- the instance of card puzzle requires a Yes
- iff the corresponding instance of clause-SAT requires a Yes.

(c) A problem P is in NP (Non-Deterministic Polynomial Time) iff there is a poly-time algorithm
V alid(I, S) that given an instance I and a solution S, tests whether S is a valid solution for I. A
key point is that the algorithm V alid(I, S) runs in polynomial time in the size of the instance I.
Formally we say that P ∈ NP iff ∃ algorithm V alid and constant c such that ∀I, I ∈ P iff
∃S V alid(I, S) = yes and ∀I, S, T ime(V alid(I, S)) ≤ |I|c.
Prove that the Card Puzzle is in NP.

(1 sentences)

• Answer: Given cards I and whether they are flipped S, it is easy to tell if all the X in the
box are covered.

(d) A problem P is NP-Hard iff Clause-SAT ≤ P .
Prove that the Card Puzzle is NP-Hard by giving a few sentences for steps 4 and 5 of the “A
Quick Reduction” slides.

(4 sentences)

• Answer: Step 4: Given an oracle for the Card Puzzle, we give an algorithm for Card-SAT.
Given a set of clauses construct the corresponding cards as described above, give these to the
oracle, and answer the same.
Step 5: Clauses satisfiable iff Card Puzzle satisfiable iff Oracle says yes iff Alg says yes. See
question (b).

8

