
CSE 3101 Design and Analysis of Algorithms

Solutions for Practice Test for Unit 5
Dynamic Programming

Jeff Edmonds

1. In one version of the scrabble game, an input instance consists of a set of letters and a board and
the goal is to find a word that returns the most points. A student described the following recursive
backtracking algorithm for it. The bird provides the best word out of the list of letters. The friend
provides the best place on the board to put the word. Why are these bad questions?

• Answer: Asking to provide the best word is not a “little question” for the bird. She would be
doing most of the work for you. Asking the friend to provides the best place on the board to put
the word is not a subinstance of the same problem as that of the given instance.

2.

I saw this puzzle on a Toronto subway. The question is how
many times the word “TRAINS” appears, winding snaking. We
could count them but this might be exponential in the number
of squares. Instead, for each box do a constant amount of work
and write one integer. In the end, the answer should appear in
the box with a “T”. You should give a few sentences explaining
the order you fill the boxes and how you do it and how much
work it is.

3 11

1

T

R

A

I

N

N

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

N

N

N

N

N

N

N

N

N

N

N

N

N

N

I

I

I

I

I

I

I

I

I

I

I

A

A

A

A

A

A

A

R

R

R

• Answer: In each box with an “S” write a 1. In each box with an “N” write the number of times
“NS” appears starting in that box. In each box with an “I” write the number of times “INS”
appears starting in that box. Similarly, “AINS”, “RAINS”, and “TRAINS”. As an example,
consider the one with “T” in it. Each time “TRAINS” appears starting this box, it must first
move from the box “T” to a neighboring box with an R in it and then continue on as “RAINS”
starting from there. Hence, the number of times “TRAINS” appears starting in our first box is
the sum of the numbers written in the neighboring boxes with an R, i.e. 124 = 31+ 31+ 31+ 31.
The boxes should be filled in order S, N, I, A, R, and finally T. No work should be redone. A
constant amount of time is spent for each box (or proportional to its degree). Hence, the running
time is linear in the number of boxes.

124

31

31

31

31

8 8

88

15

15

4

4

44

4

4

7

7

7

2

2

22

2

2

3

3

1

1

1

1

1

1

1

1

1

3

2

152 4 4

1

1

1

1

1

1

1

2

721 2

31 1

1

R

R

R

A

A

A

A

A

A

A

I

I

I

I

I

I

I

I

I

I

I

N

N

N

N

N

N

N

N

N

N

N

N

N

N

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

N

N

I

A

R

T

3. (Answer is in the slides) A classic optimization problem is the integer-knapsack problem. For the
problem in general, no polynomial algorithm is known. However, if the volume of the knapsack is a
small integer, then dynamic programming provides a fast algorithm.

Integer-Knapsack Problem:

Instances: An instance consists of 〈V, 〈v1, p1〉 , . . . , 〈vn, pn〉〉. Here, V is the total volume of the knap-
sack. There are n objects in a store. The volume of the ith object is vi, and its price is pi.

Solutions: A solution is a subset S ⊆ [1..n] of the objects that fit into the knapsack, i.e.,
∑

i∈S vi ≤ V .

Measure Of Success: The cost (or success) of a solution S is the total value of what is put in the
knapsack, i.e.,

∑
i∈S pi.

Goal: Given a set of objects and the size of the knapsack, the goal is fill the knapsack with the greatest
possible total price.

• Answer: The Knapsack Problem:

Algorithm using Trusted Bird and Friend: Consider a particular instance, 〈V, 〈v1, p1〉 , . . . ,
〈vn, pn〉〉 to the knapsack problem. The little bird knows a solution S to it.

2) Question for Bird: I ask the little bird whether or not this optimal solution contains
the nth item from the store.

Possible Answers from Bird: There are K = 2 possible answers, Yes and No.

No:

3) Constructing Subinstances: If the little bird tells me not to put the nth item into
my solution, then we simply delete this last item from consideration. This leaves us
with the smaller instance, subIno = 〈V, 〈v1, p1〉 , . . . , 〈vn−1, pn−1〉〉, which we give to a
friend. He gives me an optimal solution optSubSol for it.

4) Constructing a Solution for My Instance: Trusting both the bird and the
friend, my solution and its value/cost are same as his.

Yes:

3) Constructing Subinstances: If, on the other hand, she says to include the last
item, then we can take this last item and put it into the knapsack first. This leaves
a volume of V − vn in the knapsack. We determine how best to fill the rest of the
knapsack with the remaining items by asking our friend to solve the smaller instance
subIno = 〈V − vn, 〈v1, p1〉 , . . . , 〈vn−1, pn−1〉〉. Here too, he gives me an optimal solution
optSubSol for it.

4) Constructing a Solution for My Instance: Trusting both the bird and the
friend, my solution is the same as my friends, except I add the nth item in the space of
volume vn left for it.

5) Costs of Solution: Having the extra item in it, the value of my solution is pn more
then the value of my friend’s.

Yes but wrong:

3) Constructing Subinstances: If the last item does not fit into the knapsack because
vn > V and the bird says to include it, then we politely tell her that she is wrong.

5) Costs of Solution: We set the value of this solution to be −∞ to ensure that it is
not selected as the best one.

Recursive Back Tracing Algorithm:

6) Best of the Best: I can trust the friend because he is a recursive version of myself.
Not actually having a little bird, I try all her answers and take best of best.

7) Base Cases: If there are n = 0 items or the volume of the knapsack is V = 0, then
the only solution is to put nothing in the knapsack for a value of zero.

2

Dynamic Programming Algorithm:

1) The Set of Subinstances: The set of subinstances subI
(Describe). By tracing the recursive algorithm, we see that the set of subinstances
ever given to me, my friends, their friends is {〈V ′, 〈v1, p1〉 , . . . , 〈vi, pi〉〉 | V ′ ∈ [0..V], i ∈
[0..n]}. Note that the items considered are a contiguous prefix of the original items,
indicating a polytime algorithm. However, in addition we are considering every possible
smaller knapsack size.

Closed: Applying the sub-operator to an arbitrary subinstance
〈V ′, 〈v1, p1〉 , . . . , 〈vi, pi〉〉 from this set constructs subinstances
〈V ′, 〈v1, p1〉 , . . . , 〈vi−1, pi−1〉〉 and 〈V ′ − vi, 〈v1, p1〉 , . . . , 〈vi−1, pi−1〉〉, which are
contained in the stated set of subinstances. (The second one is not when V −vn < 0,
but we don’t actually recurse in this case.) Therefore, this set contains all
subinstances generated by the recursive algorithm.

Generating: For some instances, these subinstances might not get called in the re-
cursive program for every possible value of V ′. However, as an exercise you could
construct instances for which each such subinstance was called.

3) Construct a Table Indexed by Subinstances: The table indexed by the above
set of subinstances will have a dimension for each of the parameters i and V ′

used to specify a particular subinstance. The tables will be optCost[0..V, 0..n] and
birdAdvice[0..V, 0..n].

6) The Order in which to Fill the Table: The friends solve their subinstances (and
the table is filled) in an order so that nobody has to wait. (from smaller to larger
instances). This could be one row at a time with both i and V ′ increasing, one column
at a time, or even diagonally.

8) Code:

algorithm Knapsack (〈V, 〈v1, p1〉 , . . . , 〈vn, pn〉〉)

〈pre−cond〉: V is the volume of the knapsack. vi and pi are the volume and the price
of the ith objects in a store.

〈post−cond〉: optSol is a way to fill the knapsack with the greatest possible total
price. optCost is its price.

begin
% Table: subI[V ′, i] denotes the subinstance of optimally filling a knapsack with vol-

ume V ′ with the first i objects.
optSol[V ′, i] would store an optimal solution for it, but it is too big. Hence,
we store only the bird’s advice birdAdvice[V ′, i] given for the subinstance
and the cost optCost[V ′, i] of an optimal solution.

table[0..V, 0..n] birdAdvice, optCost

% Base Cases: The base cases are when the number of objects is zero.
For each, the solution is the empty knapsack with cost zero.
(If the knapsack has zero volume, then nothing will fit in it until there are zero items.)

loop V ′ = 0..V
% optSol[V ′, 0] = ∅
optCost[V ′, 0] = 0
birdAdvice[V ′, 0] = ∅

end loop

% General Cases: Loop over subinstances in the table.
loop i = 1 to n

loop V ′ = 0 to V

% Solve instance subI[V ′, i] and fill in the table at index 〈V ′, i〉.

3

% The bird and Friend Alg: The bird tells us either (1) exclude
the ith item from the knapsack or (2) include it. Either way, we
remove this last object, but in case (2) we decrease the size of
the knapsack by the space needed for this item. Then we ask
the friend for an optimal packing of the resulting subinstance.
He gives us (1) optSol[V ′, i − 1] or (2) optSol[V ′ − vi, i − 1]
which he had stored in the table. If the bird had said we were
to include the ith item, then we add this item to the friend’s
solution. Denote this resulting solution by optSol〈〈V ′,i〉,k〉. It is
a best packing for our instance subI 〈V ′, i〉 from amongst those
consistent with the bird’s kth answer.

% Try each possible bird answers.
% cases k = 1, 2 where 1=exclude 2=include

% optSol〈〈V ′,i〉,1〉 = optSol[V ′, i− 1]
optCost〈〈V ′,i〉,1〉 = optCost[V ′, i− 1]
if(V ′ − vi ≥ 0) then

% optSol〈〈V ′,i〉,2〉 = optSol[V ′ − vi, i− 1] ∪ i

optCost〈〈V ′,i〉,2〉 = optCost[V ′ − vi, i− 1] + pi
else

% Bird was wrong
% optSol〈〈V ′,i〉,2〉 =?
optCost〈〈V ′,i〉,2〉 = −∞

end if
% end cases
% Having the best, optSol〈〈V ′,i〉,k〉, for each bird’s answer k,

we keep the best of these best.
kmax = “a k that maximizes optCost〈〈V ′,i〉,k〉”
% optSol[V ′, i] = optSol〈〈V ′,i〉,kmax〉

optCost[V ′, i] = optCost〈〈V ′,i〉,kmax〉

birdAdvice[V ′, i] = kmax

end for
end for
optSol = KnapsackWithAdvice (〈V, 〈v1, p1〉 , . . . , 〈vn, pn〉〉 , birdAdvice)
return 〈optSol, optCost[V, n]〉

end algorithm

8’) Constructing the Solution: We would run the recursive algorithm with the bird’s
advice to find the solution to our instance. We exclude this step from our answer.

9) Running Time: The number of subinstances is Θ(V · n) and the bird chooses be-
tween two options: to include or not to include the object. Hence, the running and
the space requirements are both Θ(V · n). However, this running time should be ex-
pressed as a function of input size. The number of bits needed to represent the instance
〈V ′, 〈v1, p1〉 , . . . , 〈vn, pn〉〉 is N = |V | + n · (|v| + |p|), where |V |, |v|, and |p| are the
the numbers of bits needed to represent V , vi, and pi. Expressed in these terms, the
running time is T (|instance|) = Θ(nV) = Θ(n2|V |). This is quicker than the brute
force algorithm because its running time is polynomial in the number of items n. In
the worst case, however, V is large and the time can be exponential in the number of
bits N . I.e., if |V | = Θ(N), then T = Θ(2N). In fact, the knapsack problem is one of
the classic NP complete problems, which means that it is generally believed that not
polynomial time algorithm exists for it.

4. Stock Market Prices You are very lucky to have a time machine bring you the value each day of a
set of stocks. The input instance to your problem consists of I = 〈T, S, Price〉, where T is an integer
indicating your last day to be in the market, S is the set of |S| stocks that you consider, and Price

is a table such that Price(t, s) gives the price of buying one share of stock s on day t. Buying stocks

4

costs an overhead of 3%. Hence, if you buy p dollars worth of stock s on day t, then you can sell them

on day t′ for p · (1 − 0.03) · Price(t′,s)
Price(t,s) . You have one dollar on day 1, can buy the same stock many

times, and must sell all your stock on day T . You will need to determine how you should buy and sell
to maximize your profits.

Because you know exactly what the stocks will do, there is no advantage in owning more than one
stock at a time. To make the problem easier, assume that at each point time there is at least one
stock not going down and hence at each point in time you alway own exactly one stock. A solution
will be viewed a list of what you buy and when. More formally, a solution is a sequence of pairs
〈ti, si〉, meaning that stock si is bought on day ti and sold on day ti+1. (Here i ≥ 1, t1 = 1 and
tlast+1 = T .) For example, the solution 〈〈1, 4〉 , 〈10, 8〉 , 〈19, 2〉〉 means that on day 1 you put your one
dollar into the 4th stock, on day 10 you sell all of this stock and buy the 8th stock, on day 19 you
sell and buy the 2nd stock, and finally on day T you sell this last stock. The value of this solution is

Πi

[
(1− 0.03) · Price(ti+1,si)

Price(ti,si)

]
= 1 · (1− 0.03) · Price(10,4)

Price(1,4) · (1− 0.03) · Price(19,8)
Price(10,8) · (1− 0.03) · Price(T,2)

Price(19,2) .

(Note that the symbol Πi works the same as
∑

i except for product.)

Design for a dynamic programming algorithm for this stock buying problem. Be sure to include ALL
the steps given in the solution for the assignment. Hint: Ask the bird for the last “object” in the
solution. Be sure to explain what this means.

• Answer:

1) Specifications: (See question) An input instance consists of I = 〈T, S, Price〉, where T is the
day that I must sell, S is the set of stocks, and Price gives the prices. A solution is a sequence
of pairs 〈ti, si〉, meaning that stock si is bought on day ti and sold on day ti+1. (Here i ≥ 1,

t1 = 1 and tlast+1 = T .) The value of this solution is Πi

[
(1− 0.03) · Price(ti+1,si)

Price(ti,si)

]
.

Algorithm using Trusted Bird and Friend: I have my instance I = 〈T, S, Price〉. The little
bird knows a solution to it.

2) Question for Bird: I ask the little bird what is the last object 〈tk, sk〉 in the solution,
namely what stock sk ∈ S I should buy last and one what day tk ∈ [1..T − 1] I should
buy it. Note I will sell this stock on day T .

2’) Possible Answers from Bird: There are T ·|S| different answers 〈tk, sk〉 that she might
give.

3) Constructing Subinstances: Given the bird wants me to buy on day tk and I sell and
buy on the same day, I need my friend to tell me what and when to buy and sell so as to
sell on day tk. Therefore, I give him the subinstance subI = 〈tk, S, Price〉. Note, I do not
need to change the set of stocks considered and even though he wont use the entire table
Price, we don’t need to change it either. He gives me an optimal solution optSubSol for
it.

4) Constructing a Solution for My Instance: I produce an optimal solution optSol for
my instance I from the bird’s answer k and the friend’s solution optSubSol simply by
tacking the last object 〈tk, sk〉 on to the end of the friend’s solution. This means that my
friend and I buy and sell the same stocks on the same days, we both sell on day tk, then
I continue on to buy stock sk on this same day tk, later to sell it on day T .

5) Costs of Solution: If optSubCost is the cost of my friend’s optimal solution optSubSol

for his instance subI, then my cost optCost to my solution optSol is optSubCost ×[
(1− 0.03) · Price(T,sk)

Price(tk,sk)

]

Recursive Back Tracing Algorithm:

6) Best of the Best: I can trust the friend because he is a recursive version of myself. Not
actually having a little bird, I try all her answers and take best of best.

7) Base Cases: The base case instance is when we have to sell on day one. Its solution is
to never buy or sell anything. It’s value is one because we still have the dollar that we
started with.

5

Dynamic Programming Algorithm:

1) The Set of Subinstances: We determine the set of subinstances subI = 〈t, S, Price〉
ever given to me, my friends, their friends. For each day t ∈ [1..T], there is a subinstance
that asks what to buy and sell so that on day t you sell your last stock and maximize the
amount of money you have on that day. There are T such subinstances. Note that this
set is closed under this “sub”-operator and all of these subinstances are needed.

3) Construct a Table Indexed by Subinstances: The table is simply indexed by t ∈
[1..T]. We don’t actually store the solution optS[t] for the subinstance subI[t], but
optCost[t] is the cost of this solution and birdAdvice[t] stores the birds advice given
on this subinstance.

6) The Order in which to Fill the Table: The friends solve their subinstances (and the
table is filled) in an order so that nobody has to wait. (from smaller to larger instances).
This is simply for t = 1 . . . T .

8) Code:

algorithm Stocks (T, S, Price)

〈pre−cond〉: T is the day that I must sell, S is the set of stocks, and Price gives the
prices.

〈post−cond〉: optSol is an optimal valid schedule. It is a sequence of pairs 〈ti, si〉,
meaning that stock si is bought on day ti and sold on day ti+1. optCost is its cost.

begin
% Table: subI[t] denotes the subinstance of finding an optimal schedule ending on

day t.
optSol[t] would store an optimal solution for it, but it is too big. Hence,
we store only the bird’s advice birdAdvice[t] given for the subinstance and
the cost optCost[t] of an optimal solution.

table[1..T] optCost, birdAdvice

% Base Case: The only base case is for the optimal set ending on day t = 1.
It’s solution consists of the empty set with value 1.

% optSol[1] = ∅
optCost[1] = 1
birdAdvice[1] = ∅

% General Cases: Loop over subinstances in the table.
for t = 2 to T

% Solve instance subI[t].
% Try each possible bird answer.
for each tk ∈ [1..t− 1]

for each sk ∈ S

% The bird and Friend Alg: I want to finish on day t. I ask the bird
what stock si ∈ S I should buy last and what day ti ∈ [1..t − 1]
I should buy it. She answers 〈tk, sk〉. I ask my friend to solve
the subinstance that ends on day tk. I produce an optimal solu-
tion optSol for my instance subI[t] from the bird’s answer k and
the friend’s solution optSubSol simply by tacking the last object
〈tk, sk〉 on to the end of the friend’s solution. This means that my
friend and I buy and sell the same stocks on the same days except
after we both sell everything on day tk, I buy stock sk later to sell
it on day T .
Denote this resulting solution by optSol〈t,〈tk,sk〉〉. It is a best so-
lution for our instance subI[t] from amongst those consistent with

the bird’s 〈tk, sk〉
th

answer.
% optSol〈t,〈tk,sk〉〉 = optSol[tk] + 〈tk, sk〉

6

optCost〈t,〈tk,sk〉〉 = optCost[tk] ·
[
(1− 0.03) · Price(t,sk)

Price(tk,sk)

]

end for
% Having the best, optSol〈t,〈tk,sk〉〉, for each bird’s answer 〈tk, sk〉, we keep the best

of these best.
〈tmax, smax〉 = “a 〈tk, sk〉 that maximizes optCost〈t,〈tk,sk〉〉”
% optSol[t] = optSol〈t,〈tmax,smax〉〉

optCost[t] = optCost〈t,〈tmax,smax〉〉

birdAdvice[t] = 〈tmax, smax〉
end for
optSol = SchedulingWithAdvice (T, S, Price, birdAdvice)
return 〈optSol, optCost[T]〉

end algorithm

8’) Constructing the Solution: We would run the recursive algorithm with the bird’s ad-
vice to find the solution to our instance. We exclude this step from our answer.

9) Running Time:
The number of subinstances in the table is T .
The number of bird answers is T · |S|.
The running time is the product of these O(T 2 · |S|).

5. Dynamic Programming the Narrow Art Gallery Problem:
(See ACM contest open.kattis.com/problems/narrowartgallery):
A long art gallery has 2N rooms. The gallery is laid out as N rows of 2 rooms
side-by-side. Doors connect all adjacent rooms (north-south and east-west, but
not diagonally). The curator has been told that she must close off r of the rooms
because of staffing cuts. Visitors must be able to enter using at least one of the two
rooms at one end of the gallery, proceed through the gallery, and exit from at least
one of the two rooms at the other end. Therefore, the curator must not close off
any two rooms that would block passage through the gallery. That is, the curator
may not block off two rooms in the same row or two rooms in adjacent rows that
touch diagonally. Furthermore, she has determined how much value each room has
to the general public, and now she wants to close off the set r rooms that minimize
the sum of the values of the rooms closed, without blocking passage through the
gallery.
Figure 1: Shows an example of an art gallery of N = 10 rows and 2 columns of
rooms. The number of rooms to close is r = 5. The number 1-10 in each room gives
its value. The gray rooms indicate which should be closed in the optimal solution.

(a) Algorithmic Paradigms:
Tell me which one is wrong or say all are right.

A: An iterative algorithm takes one step at a time. During each it makes a little progress while
maintaining a loop invariant.
A recursive algorithm asks his friends any instance that is smaller and meets the precondition.
It is best not to micro managing these friends.

B: A greedy algorithm grabs the next best item and commits to a decision about it without
concern for long term consequences.

C: A recursive backtracking algorithm tries various things. For each thing tried it recurses. Then
it backtracks and tries something different.

D: A dynamic programming algorithm fills in a table with a cell for each of a set of subinstances.
Each is solved in the same way as one stack frame of the recursive backtracking algorithm.

E: They are all right.

• Answer: E: They are all right.

(b) Specification of the Narrow Art Gallery problem:
Tell me which one is wrong or say all are right.

7

A: An instance is specified by I = 〈N, r, value(1..N, 1..2)〉 where N is the number of rows. 2 is the
number of columns. r is the number of rooms to close. For n ∈ [1..N] and side ∈ {left, right},
value(n, side) is the value of this room, i.e. the cost of closing it.

B: A solution is a subset of the 2N rooms of size r.

C: A solution is valid if a visitor traveling only east-west or north-south is able to enter the top
of the gallery and leave though the bottom without traveling through a closed room. See the
white path of rooms in the figure. For example, they closed the room of value 3 instead of the
less valuable room next to it of value 2 because otherwise the public could not walk through.

D: The cost of such a solution is the sum of the values of the rooms closed. The goal is to
minimize this cost.

E: They are all right.

• Answer: E: They are all right.

(c) What is the nature of the bird?
Tell me which one is wrong.

A: There is no bird. There is no spoon (Quote from Matrix)

B: She helps us pose what we want to try.

C: We imagine her giving us a little answer about the solution.

D: She represents an algorithmic technique for learning part of the solution.

E: She helps us trust what we are trying so that we can go on.

• Answer: D is wrong.

(d) What is the nature of the friend?
Tell me which one is wrong.

A: There is no friend. There is no spoon (Quote from Matrix)

B: I know you. You are just like me.

C: You don’t micro manage him because it’s too confusing.

D: You can give him anything that meets the precondition and that is smaller.

E: Recursion

• Answer: A is wrong.

(e) Why does the bird tell you something about the end of the solution instead of the beginning?

A: It far too confusing the other way.

B: Esthetically the dynamic programming algorithm looks better going forward.

C: Esthetically the dynamic programming algorithm looks better going backwards.

D: It makes the algorithm faster.

E: The bird only knows about the beginning.

• Answer: B is right.

(f) Given the instance in the figure, I will ask bird:
“Should I close the bottom left room (i.e. labeled 7), the bottom right room (i.e. labeled 9), or
neither of them.”
Tell me which one is wrong or say all are right.

A: It is ok not to worry here about r or the higher rooms.

B: The answer she gives is k ∈ {left, right, none}. The number of bird answers we will have to
try is 3.

C: I don’t just ask just about the bottom right room, because if we just delete it, the friend’s
instance would be a funny shape.

D: I don’t include the option of closing both of them, because that is not valid.

8

E: They are all right.

• Answer: E: They are all right.

(g) One option is that we delete the bottom row of rooms (i.e. labeled 7&9) and we give the friend
the first N−1 rows of rooms.
Tell me which one is wrong or say all are right.

A: We must also give the friend the new number rfriend of rooms to close which is our number
r to close minus the number the bird closed.

B: We expect the friend to find the optimal solution for this.

C: The obvious solution for our instance of N rows is to close the rooms that our friend told us
to close and to close the rooms that the bird told us to close.

D: The problem with this obvious solution is that if the bird tells us to close the bottom left
room (i.e. labeled 7) and the friend tells us to close the room on the right in the second last
row (i.e. labeled 3), then the solution will not be valid because the public would not be able
to exit out of the bottom of the gallery.

E: They are all right.

• Answer: E: They are all right.

Our buildings will always be rectangular with two columns. The public is allowed to enter either
via the top left or the top right room. However, we are going to restrict the way that the public is
allowed to leave the bottom of the gallery. We change the problem so that in addition to what has
been specified above, the instance includes a parameter door ∈ {left, right, both} which tells us
whether the public can leave the gallery though the bottom left room but not the bottom right,
the bottom right room but not the left, or both the bottom left and the bottom right. For our
initial instance, door = both.

(h) Suppose we are given the instance in the figure and the bird tells us either to close the bottom
left, bottom right or none of the rooms on the bottom row. Tell me about the instance that we
give our friend.
Tell me which one is right or say all are wrong.

A: The set of rooms he gets is the same as the set of rooms we get.

B: We change some of the values of the rooms for our friend’s instance.

C: Because the bird told us the solution for this last row of rooms, we delete this last row from
our friend’s instance. We give the friend our first Nfriend = N−1 rows.

D: We remove just the room that the bird closes.

E: They are all wrong.

• Answer: C is right.

(i) Suppose we are given the instance in the figure and the bird tells us to close the bottom left room,
i.e. k = left. Tell me about the instance that we give our friend.
Tell me which one is right or say all are wrong.

A: The number of rooms r that must be closes is fixed by the boss and does not change.

B: We do not need to tell the friend how many rooms to close because his bird will tell him that.

C: The bird tells us the total number of rooms to close.

D: The number of that my friend’s instance needs closed is one less than the number we must
close, i.e. rfriend = r−1.

E: They are all wrong.

• Answer: D is right.

(j) Suppose we are given the instance in the figure and the bird tells us to close the bottom left room,
i.e. k = left. Tell me about the instance that we give our friend.
Tell me which one is right or say all are wrong.

9

A: There is no need for doors.

B: The friend’s instance will have no door on the bottom left, i.e. doorfriend = right. This
models the fact there is a pseudo room below his bottom left room that is closed and hence
the public cannot enter his bottom left room in this way.

C: The friend’s instance will have no door on the bottom right, i.e. doorfriend = left. This
models the fact there is a pseudo room below his bottom left room that is closed and hence
the public cannot enter his bottom left room in this way.

D: In this case, the friend should be given a door both on the left and on the right. This gives
the public the correct level of access.

E: They are all wrong.

• Answer: B is right.

(k) Suppose we are given the instance in the figure except for the fact that there is no door on the
bottom left, i.e. door = right. Tell me about the instance that we give our friend.
Tell me which one is wrong or say all are right.

A: The whole business with the doors is done to avoid the following bug. If the bird tells us to
close the bottom left room (i.e. labeled 7) and the friend tells us to close the room on the
right in the second last row (i.e. labeled 3), then the solution will not be valid because the
public would not be able to exit out of the bottom of the gallery.

B: Closing the only room on the bottom with a door will prevent the public from leaving. Hence,
we will not allow the bird to close the bottom right room, i.e. if she says that k = right, then
we politely tell her that she is wrong.

C: We politely tell the bird she is wrong by setting optCost〈I,k〉 = ∞. Being a minimization
problem, this option will never be selected.

D: Sometimes when writing a recursive program, we need to change the preconditions so that
the friend gives us the answer that meets our needs. When converting this into a dynamic
programming algorithm, this makes a larger set of subinstances.

E: They are all right.

• Answer: E: They are all right.

(l) Dynamic Programming:
Tell me which one is wrong or say all are right.

A: This recursive back tracking algorithm effectively tries every possible solution, i.e. brute force.
The time is exponential.

B: Recursive back tracking is a common algorithmic technique that is used in artificial intelligence
(certainly before machine learning).

C: A dynamic programming algorithm saves time by in a way similar to that the greedy algorithm
works, i.e. if the existence of an optimal solution consistent with decision A implies the
existence of an optimal solution consistent with decision B, then decision A does not need to
be tried.

D: A dynamic programming algorithm saves time by not solving the same subinstance more than
once.

E: They are all right.

• Answer: C is wrong: It is right for greedy algorithms, but this is not done in dynamic
programming.

(m) We start the dynamic programming algorithm by setting up a table indexed by all of the subin-
stances that some friend friend friend will have to solve.
Tell me which one is wrong or say all are right.

A: This table will have a dimension that is indexed by the number of rows N ′ ∈ [0..N] that the
friend will consider.

10

B: This table will have a dimension that is indexed by the number of rooms r′ ∈ [0..r] that the
friend will have to close.

C: This table will have a dimension indicating the values of the each room, i.e. the numbers 0 to
10 in the figure.

D: This table will have a dimension that is indexed by the parameter door ∈ {left, right, both}.

E: They are all right.

• Answer: C is wrong.

(n) What needs to be true about the set S of subinstances being solved?
Tell me which one is wrong or say all are right.

A: Include our original instance. (Invite the bride and groom.)

B: Closed under the friend operation. For every subinstance I ′ ∈ S, all of I ′’s friends must also
be in S. (If you invite your aunt, then you must invite her friends.)

C: Don’t have too many things in S that are not asked by some friend’s friend.

D: Sometimes it is too hard to tell if some I ′ is actually asked by some friend’s friend. Then we
just put it in S for good luck.

E: They are all right.

• Answer: E: They are all right.

(o) The number of subinstance that we must solve is:

A: N × r × 10× 2N

B: 2N

C: 3rN

D: O(r +N)

E: exponential (say in N , r, or the number of bits to write down the values of the rooms.)

• Answer: C is right.

(p) Each cell of the table (tables)
Tell me which one is wrong or say all are right.

A: Is indexed by a subinstance to be solved.

B: Stores the optimal solution for that subinstance.

C: Stores the cost of optimal solution for that subinstance.

D: Stores the bird’s advice for that subinstance.

E: They are all right.

• Answer: B is wrong.

(q) What order should the subinstances in the table be completed.
Tell me which one is wrong or say all are right.

A: Smallest to largest.

B: In an order that nobody waits, i.e. when a subinstance is solved, all of his friends have already
been solved. When its your aunt’s job, her friends are already done and gotten drunk.

C: If the table is two dimentional, you have to fill it in diagonally.

D: Basecases first. Our instance last.

E: They are all right.

• Answer: C is wrong.

(r) What are the base cases?
Tell me which one is wrong or say all are right.

A: The smallest subinstances in your table.

B: Subinstances that don’t have any friends.

11

C: Subinstances for which the generic code does not work.

D: Subinstances that you can solve easily on your own.

E: They are all right.

• Answer: E: They are all right.

(s) The base cases are handled as follows.
Tell me which one is right or say all are wrong.

A: if(r ≤ 0) then return(no rooms need to be closed)

B: if(N ≤ 0) then return(no rooms to close)

C: if(N < r) then return(more rooms to close than can be closed)

D: % The cost of the solution is the sum of that values of the rooms closed. Hence, if there are
r = 0 rooms to close, then the cost is zero.
for all entries of the table for which r′ = 0, optCost[...r; ..] = 0

E: They are all wrong.

• Answer: D is right: The case that N < r has no solution and is handled in the code.

(t) Dynamic Programming
Tell me which one is wrong or say all are right.

A: To solve our instance, we recursively ask friends to solve smaller subinstances.

B: We loop over all subinstances from smallest to largest.

C: The word “Memoization” comes from the word “Memo,” i.e. to write nodes about what has
happened already.

D: To solve our instance, we look in the table to see what our friends have stored about smaller
subinstances.

E: They are all right.

• Answer: A is wrong.

(u) The first thing a dynamic program does is:
Tell me which one is right or say all are wrong.

A: Ask the bird about an optimal solution of the inputted instance.

B: Set up the table.

C: Check if the input is a base case.

D: Check if the input has the correct format.

E: They are all wrong.

• Answer: B is right.

(v) We combine the cost of our friend’s solution and the cost of our bird’s solution k to get:
Tell me which one is right or say all are wrong.

A: The cost of an optimal solution optCostI′ for the instance I ′.

B: The cost of an optimal solution optCost〈I′,k〉 for the instance I ′ from amongst those that are
consistent with this bird’s answer k.

C: We need to compute the optimal solution.

D: The whole idea of combining is misrepresents the technique.

E: They are all wrong.

• Answer: B is right.

(w) Consider a dynamic programming routine named RoomClosures. A key line of its is:
Tell me which one is right or say all are wrong.

A: optCost.. = optCost[Ifriend] +GetBirdsCost(...)

12

B: optCost.. = RoomClosures(Ifriend) + optCostbird
where if(k = left) then opCostbird = value(N ′, left).

C: optCost.. = optCost[Ifriend] + optCostbird
where if(k = none) then opCostbird = 0.

D: optCost.. = RoomClosures(Ifriend) +GetBirdsCost(...)

E: They are all wrong.

• Answer: C is right: The friend’s answer is looked up in the table and the bird’s answer is
the current one we are trying.

(x) Dynamic Programming
Tell me which one is wrong or say all are right.

A: We try all bird answers.

B: Having the best, optSol〈I′,k〉, for each bird’s answer k, we keep the best of these best.

C: The following is reasonable pseudo code.
kmin = “a k that minimizes optCost〈I′,k〉”

D: Options A, B, and C need to be done in dynamic programming but not in recursive back-
tracking.

E: They are all right.

• Answer: D is wrong.

(y) Finishing up the dynamic programming algorithm.
Tell me which one is wrong or say all are right.

A: The following is where the memo is being taken.
optCost[I ′] = optCost〈I′,kmin〉.

B: The following is key line of how Jeff does dynamic programming, but you likely won’t hear
anyone else talk about it. birdAdvice[I ′] = kmin.

C: The algorithm optSol = AlgWithAdvice (I, birdAdvice) reruns the algorithm but this time it
is fast because now there really is a bird.

D: The algorithm AlgWithAdvice and the greedy algorithm both follow one path down the
decision tree.

E: They are all right.

• Answer: E: They are all right.

(z) Running time of dynamic programming algorithms.
Tell me which one is wrong or say all are right.

A: The running time of a dynamic programming algorithm is the number of subinstances times
the number of bird answers.

B: If an optimal solution is found in the inner loop then the time is multiplied by the number of
bits to write down the solution.

C: Finding an optimal solution when the bird’s advice is known is fast. The time is in linear in
the number of bits to write down the solution.

D: If the input consists of n objects and each subset of these objects is a subinstance, then the
number of subinstances is exponential. This occurring with the obvious dynamic programming
algorithm is a very common reason for a problem to be NP-complete, i.e. no polynomial
algorithm for it is known.

E: They are all right.

• Answer: E: They are all right.

6. More questions past z.

(a) Which is true about the running time of our RoomClosures dynamic program?

13

A: The running time of this algorithm is proportional to the number of rows of rooms N . The
size of the input includes the logN bits to represent N . This means that this dynamic
programming algorithm runs in exponential time just like the Knapsack problem.

B: The running time of this algorithm is proportional to the number of rooms to close r. The size
of the input includes the log r bits to represent r. This means that this dynamic programming
algorithm runs in exponential time just like the Knapsack problem.

C: A and B.

D: The running time of this algorithm is quadratic in the size of the input.

E: They are all wrong.

• Answer: D is right: The size the input is dominated by the table value whose description
requires at least N bits. Lets say size = Θ(N). The number of rooms to close is at most
the number of rows, i.e. r ≤ N or else the solution is impossible. The running time is the
number of subinstances times the number of bird answers which is T ime(size) = 3Nr × 3 =
O(N2) = O(size2).

(b) Suppose instead of the number of columns being restricted to 2, the gallery could have width w.
Consider extending the same basic algorithm done above.
Tell me which one is wrong or say all are right.

A: The running time would increase by a factor of w.

B: We would still ask the bird which rooms to close on the bottom row.

C: The number of bird answers would now be Θ(2w).

D: This problem is NP-complete, i.e. no polynomial algorithm for it is known.

E: They are all right.

• Answer: A is wrong.

(c) Write out the code for the RoomClosure algorithm developed here.

14

algorithm DynamicProgrammingAlgforRoomClosures (N, r, value(1..N, 1..2))

〈pre−cond〉: N is the number of rows. 2 is the number of columns. r is the number of rooms to
close. For n ∈ [1..N] and side ∈ {left, right}, value(n, side) is the value of this room, i.e. the
cost of closing it.

〈post−cond〉: A solution is a subset of the 2N rooms of size r.
A solution is valid if a visitor traveling only east-west or north-south is able to enter the top
of the gallery and leave though the bottom without traveling through a closed room. See the
white path of rooms in the figure.
The cost of such a solution is the sum of the values of the rooms closed. The goal is to minimize
this cost.
The program returns optSol which is an optimal solution for this instance and optCost which
is it’s cost.

begin
% Table: subI[N ′, r′, door′] denotes the subinstance in which we consider the first N ′ ∈ [0..N] columns

of the rooms, we close r′ ∈ [0..r] of the rooms, and door′ ∈ {left, right, both} specifies which
of the rooms on the bottom have doors.
optSol[N ′, r′, door′] would store an optimal solution for it, but it is too big. Hence, we
store only the bird’s advice birdAdvice[N ′, r′, door′] given for the subinstance and the cost
optCost[N ′, r′, door′] of an optimal solution.

table[0..N, 0..r, 0..2] optCost, birdAdvice

% Base Cases: When the number of rooms r′ to close is zero, the solution is to close zero
rooms with a cost of zero. We won’t worry about the number N ′ of rows being zero because
we will make sure that N ′ ≥ r′.

for N ′ ∈ [0..N], for door′ ∈ {left, right, both}
% optSol[N ′, 0, door′] = no rooms
optCost[N ′, 0, door′] = 0
birdAdvice[N ′, 0, door′] = none

end loop

% General Cases: Loop over subinstances in the table.
for N ′ ∈ [0..N], for r′ ∈ [0..min(r,N ′)], for door′ ∈ {left, right, both}

% Solve instance subI[N ′, r′, door′] and fill in table entry 〈N ′, r′, door′〉.
% Try each possible bird answer.
for k ∈ {left, right, none}

% The bird and Friend Alg: Our instance either hasN ′ rows of rooms, r′ rooms to close
and a door on the door′ ∈ {left, right, both}. We ask the bird whether to close the
bottom left room, the bottom right, or neither. She answers k ∈ {left, right, none}.
Given the bird has handled the bottom row indexed N ′, we ask the friend about
the first Nfriend = N ′ − 1 rows. If the bird says to close a room, then we ask the
friend to close one few doors, i.e. rfriend = r′−1. Similarly, if she says to close no
rooms, then rfriend = r′. If the bird answers to delete the bottom left room, then
we give the friend the instance no door on the bottom left, i.e. if k = left then
doorfriend = right. Similarly, if the bird answers k = right, then doorfriend = left.
If the bird closes no rooms on the bottom then we leave both of the friend’s doors
open, i.e. if k = none then doorfriend = both. If we must close one room per row,
i.e. N ′ = r′, then we make sure the bird closes at least one room. This ensures that
Nfriend ≥ rfriend. If we are given the instance with no door on the bottom left,
then we will not allow the bird to close the bottom right room, otherwise, the public
can’t get out, i.e. it is not the case that door′ = right and k = right. Otherwise,
we combine our friend’s room closures solution with that of the bird.

15

% Create friend’s instance and bird’s cost.
Nfriend = N ′ − 1
if(k = left) then

rfriend = r′ − 1
doorfriend = right

opCostbird = value(N ′, left)
elseif(k = right) then

rfriend = r′ − 1
doorfriend = left

optCostbird = value(N ′, right)
elseif(k = none) then

rfriend = r′

doorfriend = both

optCostbird = 0
endif
% Build our solution and cost from friend’s and bird’s solutions.
if(Nfriend < rfriend or (door′ = left and k = left) or (door′ = right and k = right)) then

% optSol〈〈N ′,r′,door′〉,k〉 = error

optCost〈〈N ′,r′,door′〉,k〉 = ∞
else

% optSol〈〈N ′,r′,door′〉,k〉 = optSol[Nfriend, rfriend, doorfriend] + k

optCost〈〈N ′,r′,door′〉,k〉 = optCost[Nfriend, rfriend, doorfriend] + optCostbird
endif

end for
% Having the best, optSol〈〈N ′,r′,door′〉,k〉, for each bird’s answer k, we keep the best of these best.
kmin = “a k that minimizes optCost〈〈N ′,r′,door′〉,k〉”
% optSol[N ′, r′, door′] = optSol〈〈N ′,r′,door′〉,kmin〉

optCost[N ′, r′, door′] = optCost〈〈N ′,r′,door′〉,kmin〉

birdAdvice[N ′, r′, door′] = kmin

end for
optSol = AlgWithAdvice (N, r, value(N, 2), birdAdvice)
return 〈optSol, optCost[N, r, both]〉

end algorithm

7. Stock Market Prices You are very lucky to have a time machine bring you the value each day of a
set of stocks. The input instance to your problem consists of I = 〈T, S, Price〉, where T is an integer
indicating your last day to be in the market, S is the set of |S| stocks that you consider, and Price

is a table such that Price(t, s) gives the price of buying one share of stock s on day t. Buying stocks
costs an overhead of 3%. Hence, if you buy p dollars worth of stock s on day t, then you can sell them

on day t′ for p · (1 − 0.03) · Price(t′,s)
Price(t,s) . You have one dollar on day 1, can buy the same stock many

times, and must sell all your stock on day T . You will need to determine how you should buy and sell
to maximize your profits.

Because you know exactly what the stocks will do, there is no advantage in owning more than one
stock at a time. To make the problem easier, assume that at each point time there is at least one
stock not going down and hence at each point in time you alway own exactly one stock. A solution
will be viewed a list of what you buy and when. More formally, a solution is a sequence of pairs
〈ti, si〉, meaning that stock si is bought on day ti and sold on day ti+1. (Here i ≥ 1, t1 = 1 and
tlast+1 = T .) For example, the solution 〈〈1, 4〉 , 〈10, 8〉 , 〈19, 2〉〉 means that on day 1 you put your one
dollar into the 4th stock, on day 10 you sell all of this stock and buy the 8th stock, on day 19 you
sell and buy the 2nd stock, and finally on day T you sell this last stock. The value of this solution is

Πi

[
(1− 0.03) · Price(ti+1,si)

Price(ti,si)

]
= 1 · (1− 0.03) · Price(10,4)

Price(1,4) · (1− 0.03) · Price(19,8)
Price(10,8) · (1− 0.03) · Price(T,2)

Price(19,2) .

(Note that the symbol Πi works the same as
∑

i except for product.)

16

Design for a dynamic programming algorithm for this stock buying problem. Be sure to include ALL
the steps given in the solution for the assignment. Hint: Ask the bird for the last “object” in the
solution. Be sure to explain what this means.

• Answer:

1) Specifications: (See question) An input instance consists of I = 〈T, S, Price〉, where T is the
day that I must sell, S is the set of stocks, and Price gives the prices. A solution is a sequence
of pairs 〈ti, si〉, meaning that stock si is bought on day ti and sold on day ti+1. (Here i ≥ 1,

t1 = 1 and tlast+1 = T .) The value of this solution is Πi

[
(1− 0.03) · Price(ti+1,si)

Price(ti,si)

]
.

Algorithm using Trusted Bird and Friend: I have my instance I = 〈T, S, Price〉. The little
bird knows a solution to it.

2) Question for Bird: I ask the little bird what is the last object 〈tk, sk〉 in the solution,
namely what stock sk ∈ S I should buy last and one what day tk ∈ [1..T − 1] I should
buy it. Note I will sell this stock on day T .

2’) Possible Answers from Bird: There are T ·|S| different answers 〈tk, sk〉 that she might
give.

3) Constructing Subinstances: Given the bird wants me to buy on day tk and I sell and
buy on the same day, I need my friend to tell me what and when to buy and sell so as to
sell on day tk. Therefore, I give him the subinstance subI = 〈tk, S, Price〉. Note, I do not
need to change the set of stocks considered and even though he wont use the entire table
Price, we don’t need to change it either. He gives me an optimal solution optSubSol for
it.

4) Constructing a Solution for My Instance: I produce an optimal solution optSol for
my instance I from the bird’s answer k and the friend’s solution optSubSol simply by
tacking the last object 〈tk, sk〉 on to the end of the friend’s solution. This means that my
friend and I buy and sell the same stocks on the same days, we both sell on day tk, then
I continue on to buy stock sk on this same day tk, later to sell it on day T .

5) Costs of Solution: If optSubCost is the cost of my friend’s optimal solution optSubSol

for his instance subI, then my cost cost to my solution optSol is optSubCost ×[
(1− 0.03) · Price(T,sk)

Price(tk,sk)

]

Recursive Back Tracing Algorithm:

6) Best of the Best: I can trust the friend because he is a recursive version of myself. Not
actually having a little bird, I try all her answers and take best of best.

7) Base Cases: The base case instance is when we have to sell on day one. Its solution is
to never buy or sell anything. It’s value is one because we still have the dollar that we
started with.

Dynamic Programming Algorithm:

1) The Set of Subinstances: We determine the set of subinstances subI = 〈t, S, Price〉
ever given to me, my friends, their friends. For each day t ∈ [1..T], there is a subinstance
that asks what to buy and sell so that on day t you sell your last stock and maximize the
amount of money you have on that day. There are T such subinstances. Note that this
set is closed under this “sub”-operator and all of these subinstances are needed.

3) Construct a Table Indexed by Subinstances: The table is simply indexed by t ∈
[1..T]. We don’t actually store the solution optS[t] for the subinstance subI[t], but cost[t] is
the cost of this solution and birdAdvice[t] stores the birds advice given on this subinstance.

6) The Order in which to Fill the Table: The friends solve their subinstances (and the
table is filled) in an order so that nobody has to wait. (from smaller to larger instances).
This is simply for t = 1 . . . T .

8) Code:

algorithm Stocks (T, S, Price)

17

〈pre−cond〉: T is the day that I must sell, S is the set of stocks, and Price gives the
prices.

〈post−cond〉: optSol is an optimal valid schedule. It is a sequence of pairs 〈ti, si〉,
meaning that stock si is bought on day ti and sold on day ti+1.

begin
% Table: optSol[t] stores an optimal schedule ending on day t and costSol[t] its cost.
table[1..T] cost, birdAdvice

% Base Case: The only base case is for the optimal set ending on day t = 1.
It’s solution consists of the empty set with value 1.

% optSol[1] = ∅
cost[1] = 1
birdAdvice[1] = ∅

% General Cases: Loop over subinstances in the table.
for t = 2 to T

% Solve instance subI[t].
% Try each possible bird answer.
for each tk ∈ [1..t− 1]

for each sk ∈ S

% The bird and Friend Alg: I want to finish on day t. I ask the bird what
stock si ∈ S I should buy last and what day ti ∈ [1..t−1] I should by it.
She answers 〈tk, sk〉. I ask my friend to solve the subinstance that ends
on day tk. I produce an optimal solution optSol for my instance subI[t]
from the bird’s answer k and the friend’s solution optSubSol simply by
tacking the last object 〈tk, sk〉 on to the end of the friend’s solution.
This means that my friend and I buy and sell the same stocks on the
same days except after we both sell everything on day tk, I buy stock
sk later to sell it on day T .

% optSol〈tk,sk〉 = optSol[tk] + 〈tk, sk〉

cost〈tk,sk〉 = cost[tk] ·
[
(1− 0.03) · Price(t,sk)

Price(tk,sk)

]

end for
% Having the best, optSol〈tk,sk〉, for each bird’s answer 〈tk, sk〉, we keep the best of

these best.
〈tmax, smax〉 = “a 〈tk, sk〉 that maximizes cost〈tk,sk〉”
% optSol[t] = optSol〈tmax,smax〉

cost[t] = cost〈tmax,smax〉

birdAdvice[t] = 〈tmax, smax〉
end for
optSol = SchedulingWithAdvice (Price, birdAdvice)
return 〈optSol, cost[T]〉

end algorithm

8’) Constructing the Solution: We would run the recursive algorithm with the bird’s ad-
vice to find the solution to our instance. We exclude this step from our answer.

9) Running Time:
The number of subinstances in the table is T .
The number of bird answers is T · |S|.
The running time is the product of these O(T 2 · |S|).

A Second Answer: There is another possible answer, but I was discouraging it because is it
harder. The running time is O(T · |S|2) instead of O(T 2 · |S|). Which is better depends on
whether there are more stocks |S| or more time steps T . In this second solution, I ask the
bird what stock to own on the last day. She answers sk ∈ S. Note there are |S| different
answers. The friend’s subinstance will now end on day T−1. But it now matters what stock

18

he owns on this his last day because if he ends with any stock other than sk then I get charged
(1 + 0.03) for selling what he has in order to buy sk. This is where the hard part comes in.
We need to change the pre and post conditions of the problem to indicate which stock the
friend should own on his last day and require that he not sell this stock on this last day but
continue to own it. The new subinstance will be subI = 〈t, S, Price, s〉, where as before t is
his last day to be in the market (except that he does not sell on this day), S is the set of
|S| stocks considered, and Price gives the prices, but now s indicates that last stock to own.
This gives T · |S| subinstances and a two dimensional table. You wont get part marks for
getting some of the parts of this answer correct unless you can argue about the need for your
friend to not sell his stock.

(a) Deleted questions about reductions Three dynamic programming algorithms occure to me.

i. The most obvious one has mT subinstances (nodes in G) and mT bird answers (degree of
nodes in G) given a time of O(m2T 2).

ii. The second algorithm decreases the number of bird answers (degree of nodes in G) to m given
a time of O(m2T).

iii. The third algorithm instead decreases the number of subinstances (nodes in G) to T given a
time of O(mT 2).

Clearly the first is the worst. Whether the second or third is best depends on whether there are
more stocks m, or more time steps T . Answers each of the following questions (except for the
first) three times, one for each of these algorithms.

i. Suppose at first that there is not the 3% overhead for selling stock. Give an easy algorithm
for knowing what and when to buy and sell.

• Answer: Since there is not cost in buying and selling, we might as well sell and buy
every day. Hence, each day t sell the stock you have and buy the stock st that makes the

biggest profit Price(t+1,st)
Price(t,st)

between day t and day t+ 1.

ii. Read Edmonds’ notes chapter 19.9 which describes how to design a dynamic program via
reductions. This has not been covered in either class. Follow the steps in this chapter to
reduce this new stock problem to the longest paths problem.

A. Given the table of prices Price(t, s), how do you map this to a graph G? A path is a
sequence of nodes which will correspond to a sequence of states that you might be in
during your stock buying. Hence, each node of G will represent one such state. However,
you what as few nodes as possible. Hence, you must identify a small set of bench mark
states that are of interest. What are these states/nodes? What is the start node ŝ and
the finishing node t̂ in your graph?

• Answer: In the first and second algorithms, there is a node us,t for each stock s ∈ [1..m]
and each day t ∈ [1..T]. Being in this state means that on day t you own stock s.
In the third algorithm, **************************** REWRITE

If you pause your buying-selling sequence after you buy a stock, then your state would
be determined by the current day ti and the stock si that you own. However, we choose
to pause after you sell the stock. Hence, your state is determined by the current day.
We will have a node in the graph for each day t ∈ [1..T]. Standing on node t means
that it is day t, you have just sold some stock and you are about buy something else.
The start node ŝ is day 1 and the finishing node t̂ is day T .

• Answer: If you pause your buying-selling sequence after you buy a stock, then your
state would be determined by the current day ti and the stock si that you own. However,
we choose to pause after you sell the stock. Hence, your state is determined by the
current day. We will have a node in the graph for each day t ∈ [1..T]. Standing on
node t means that it is day t, you have just sold some stock and you are about buy
something else. The start node ŝ is day 1 and the finishing node t̂ is day T .

19

B. What are the edges between the nodes?

• Answer: The edges out of node t consist of your options. For each stock s ∈ [1..m]
and each day t′ ∈ [t+ 1..T] put an edge from node t to node t′.

C. What is the length of each edge?

• Answer: The length of this edge will be log
[
(1− 0.03) · Price(t′,s)

Price(t,s)

]
.

D. Given the longest path from ŝ to t̂ in your graph G, how does this tell you what and when
to buy stocks?

• Answer: If your ith edge in the path goes from node t to node t′ and buys and sells
stock s then our ith item in our solution will be 〈ti, si〉 = 〈t, s〉.

E. The value costpath of the path is the sum of the lengths of the edges in it. The value of
your resulting stock solution is coststock as defined above. Show the relationship between
costpath and coststock

• Answer: log [coststock] = log
[
Πi

[
(1− 0.03) · Price(ti+1,si)

Price(ti,si)

]]
=

∑
i log

[
(1− 0.03) · Price(ti+1,si)

Price(ti,si)

]
= costpath.

8. I have said at various times that all dynamic programming algorithms can be reduced to min s−t path
in a leveled graph. This test will cover both reductions and dynamic programming by examining this
relationship. See my description of how to do this in the dynamic programming steps.

(a) We will warm up by giving an algorithm for a product version of LeveledGraph (G, s, t) using an
“oracle” for the standard sum version of it.

Sum Path: We covered the problem LeveledGraph (G, s, t). Its input is Isum =
〈Gsum, ssum, tsum〉 where Gsum is a weighted leveled graph and ssum and tsum are nodes.
A solution Ssum is a path from s to t through G. The cost of a solution costsum(Ssum) is
the sum of the weights of the edges in the given path. If we climb the mountain, the ora-
cle Oraclesum will give us am optimal solution Oraclesum(Isum) = Ssum, for which we can
compute its cost.

Prod Path: We now define a new problem LeveledGraphprod (G, s, t). Its inputs is Iprod =
〈Gprod, sprod, tprod〉 and solutions Sprod are the same as before. The only difference is that
the cost of a solution costprod(Sprod) is now the product of the weights of the edges in the
given path. Our goal is construct an algorithm Algprod. It takes Iprod as input. It maps
instance Iprod to instance Isum using our program InstanceMap(Iprod) = Isum. It gives Isum
to Oraclesum(Isum) who gives us Ssum. Our algorithm then maps solution Ssum to solution
Sprod using our program SolutionMap(Ssum) = Sprod.

Correct: All you need to do to prove that your algorithm Algprod works is to show that the
solution map is a bijection SolutionMap−1(Sprod) = Ssum and show that this bijection keeps
the solutions ordered with respect to cost, namely costprod(Sprod) ≥ costprod(S

′
prod) if an only

if costsum(Ssum) ≥ costsum(S′
sum).

Hey recursion is like a reduction to the same problem - expect with smaller instances.
Hey the first dynamic programming algorithm in Test 7 suffered from the fact that the solution
bijection did not keeps the solutions ordered with respect to cost.

Test Questions:
- Your task is to define InstanceMap(Iprod) = Isum
- and SolutionMap(Ssum) = Sprod.
- Also define CostMap(costprod) = costsum. Why is this cost right?
Hint: What function did you learn in highschool for which f(x× y) = f(x) + f(y)?

• Answer: Given Iprod = 〈Gprod, sprod, tprod〉, we construct Isum = 〈Gsum, ssum, tsum〉 simply
by taking the logarithm of each weight.
The path Sprod returned by our algorithm will be identical to that Ssum returned by the
oracle.
The cost costsum is given by

∑
e∈path log(we) = log (Πe∈pathwe) = log (costprod).

20

(b) Now we will give an algorithm for the stock problem using an “oracle” for the product version of
LeveledGraph (G, s, t). The resulting algorithm will be different than that in the assignment. I
wonder if it will be faster?

Stock Problem: The only difference between the version of the problem considered here and
that in the practice assignment is that we are going to allow people to hold cash if all the
stocks are doing poorly.
You are very lucky to have a time machine bring you the value each day of a set of stocks. The
input instance to your problem consists of I = 〈T, S, Price〉, where T is an integer indicating
your last day to be in the market, S is the set of |S| stocks that you consider, and Price is
a table such that Price(t, s) gives the price of buying one share of stock s on day t. Selling
a stock costs an overhead of 3%. Hence, if you buy p dollars worth of stock s on day t, then

you can sell them on day t′ for p · (1 − 0.03) · Price(t′,s)
Price(t,s) . You have one dollar on day 1, can

buy the same stock many times, and must sell all your stock on day T . You will need to
determine how you should buy and sell to maximize your profits. Because you know exactly
what the stocks will do, there is no advantage in owning more than one stock at a time. If
all the stocks are doing poorly, you can hold cash for a period. The only difference between
cash and yet another stock is that you don’t pay 3% for selling cash.

Graph Gprod: Recall our goal is to give an algorithm for the stock problem using an “oracle” for
the product version of LeveledGraph (G, s, t). Given your instance Istock to the stock problem,
your first task is to define the instance InstanceMap(Istock) = Iprod = 〈Gprod, sprod, tprod〉.

Nodes of Gprod are Subinstances: Because I want a completely different algorithm for
this Stock problem than that in the assignment, I will give you the set of subinstance
that I want you to solve.

Maximize Cash at time t: These are the same subinstances that we had in the as-
signment. For each time t, let subI[t] ask to maximize the amount of cash you have on
day t (at a point in time when all stocks have been sold). optCost[t] will denote this
maximized amount of cash.

Maximize Stock s at time t: These subinstances are new. For each time t and stock
s, let subI[t, s] ask to maximize the value of stock s you have on day t, assuming
you only hold this stock on this afternoon. Lets suppose that on days that you sell a
stock, you do it at time 1:00pm and on days that you buy, you do so at time 1:02pm.
subI[t] maximizes the cash you have at time 1:01 and subI[t, s] maximizes value of s
you have at time 1:03. To keep all our cost units in dollars, optCost[t, s] will measure
the dollar value of stock s that you hold at this time. One of the possible reasons that
you own this stock at this time is because you just bought it on this same day. In
this case, optCost[t] denotes the amount you spent at 1:02 on stock s and optCost[t, s]
denotes what it is worth at 1:03. In this case, we will assume that these amounts
optCost[t, s] = optCost[t] are the same. On the other hand, if you own stock s at time
1:03 on day t′ because you bought it on some earlier day t, then because the stock has

changed in value, we have that optCost[t′, s] = optCost[t, s] × Price(t′,s)
Price(t,s) . Because you

are only charged the 3% commission when you sell, this is not included here.

Test Questions: Your tasks are the following:

i. The Game of Life: Given your instance Istock to the stock problem, your first task is
to define the instance InstanceMap(Istock) = Iprod = 〈Gprod, sprod, tprod〉 to give to the
oracle. Recall that in the Steps document, the nodes of the graph Gprod was described
in three ways: as the cells in the dynamic programing table, as the subinstances, and as
the “Graph of Life”. I have told you the subinstances. Your are to describe Gprod as the
Graph of Life.
Hint: See how this was done in the Steps document.

A. I have told you the subinstances are subI[t] and subI[t, s]. You are to describe these
exact same nodes as states state[t] and state[t, s] in this game of life.

21

B. There are a number of different types of atomic life action that can be taken to move
between these states. For each do the following.
- Describe the action that is being taken within the life of stocks.
- Which states does the corresponding edge of Gprod traverse between?
- How does the value of your state change when you take this action?
- What should the weights of these edge be?
Hint: Remember the weights are multiplicative, i.e. a ratio.

C. Which are the start and terminating nodes sprod and tprod?

ii. What is the running time of your stock algorithm? i.e. In terms of S and T , how many
edges does your graph Iprod have? Is it better than the time of the algorithm presented
in the solution of the assignment?

iii. The oracle gives you an optimal solution Sprod. It is a path through the graph Iprod from
sprod to tprod. How do you map this to a solution Sstock to your stock problem?

iv. Recall that the cost of the path Sprod is the product of the weights of its edges. Recall
that the cost of Sstock is amount of money you have on the last day. How do you map
this cost of Sprod to this cost of Sstock? Why is this cost right?

• Answer:

i. Lets describe Gprod as the Graph of Life.

A. States/Nodes:

Cash at time t: For every day t, state[t] is the state in which it is 1:01pm on day t

and you are holding some p dollars, which is as much money as you have managed
to muster so far.

Stock s at Time t: For every day t and stock s, state[t, s] is the state in which it is
1:03pm on day t and you are holding some p dollars worth of stock s, which is as
much as you have mustered.

B. Actions/Edges: The edges between these states consist of the action that transition
you from one state to another. Certainly one possible action is buying a stock s and
another is selling it. Another possible “action” is not doing either of those things.

Buy Stock s on day t: Suppose it is 1:01pm on day t and you are sitting on
node/state subI[t] with p dollars. Suppose at 1:02pm you buy stock s. This moves
you to being in the state of it being 1:03pm on day t and you own p worth of stock s,
i.e. you are in node/state subI[t, s]. This action does not increase your worth p at all
and hence its multiplicative ratio is one. Hence, there is an edge 〈subI[t], subI[t, s]〉
between these states with weight one.
Note that if this action is taken then optCost[t, s] = optCost[t].

Sitting on Cash on day t: Suppose it is 1:01pm on day t and you are sitting on
node/state subI[t] with p dollars. Suppose you do not buy any stocks this day. A
day goes by. This moves you to being in the state of it being 1:01pm on day t+1
and you are sitting on node/state subI[t+1] with the same p dollars. This action
does not increase your worth p at all and hence its multiplicative ratio is one. Hence,
there is an edge 〈subI[t], subI[t+1]〉 between these states with weight one.
Note that if this action is taken then optCost[t+1] = optCost[t].

Sell Stock s on day t+1: Suppose it is 1:03pm on day t and you are sitting on
node/state subI[t, s] with p dollars worth of stock s. You have nothing to do until
the next day so you play with your kids. In the mean time, your stock has gone up

by the multiplicative ratio Price(t+1,s)
Price(t,s) .

Suppose at 1:00pm on day t+1 you sell stock s. This moves you to being in the state
of it being 1:01pm on day t+1 and you are sitting on node/state subI[t+1] with money.
Because selling costs 3% the amount you have is multiplied by 1−0.03. Hence, there is

an edge 〈subI[t, s], subI[t+1]〉 between these states with weight (1−0.03)× Price(t+1,s)
Price(t,s) .

22

Note that if this action is taken then optCost[t+1] = optCost[t, s] × (1−0.03) ×
Price(t+1,s)
Price(t,s) .

Sitting on Stock s on day t+1: Suppose instead you do not sell at 1:00pm on day
t+1. This moves you to being in the state of it being 1:03pm on day t+1 and
you are sitting on node/state subI[t+1, s] with stock s. Hence, there is an edge

〈subI[t, s], subI[t+1, s]〉 between these states with weight Price(t+1,s)
Price(t,s) .

Note that if this action is taken then optCost[t+1, s] = optCost[t, s]× Price(t+1,s)
Price(t,s) .

C. s and t: We start with $1 on day 1. Hence our start state/note is sprod = subI[1].
Our goal is to maximize the money that we have on day T . Hence our termination
state/note is tprod = subI[T].

ii. Running Time: For three of the types, there is an edge for every day t and stock s. For
the remaining type, there is one for every t. Hence, the total number of edges is 3TS+T .
Being the number of edges, the running time of your stock algorithm is O(TS) which is
much better than the time O(T 2 · |S|) of the algorithm given in the assignment.

iii. Solutions: The oracle gives you an optimal solution Sprod. It is a path through the graph
Gprod from sprod = subI[1] to tprod = subI[T]. Each node in this path corresponds to
a state that the stock buying process may be in and each edge in it corresponds to the
action that takes you from the one state to the next. As such this path exactly specifies
our solution Sstock to our stock problem.

iv. Costs: Recall that the cost of path Sprod is the product of the weights of its edges. The
weight of each edge in the path corresponds to the multiplicative amount that your worth
increases by the action corresponding to this edge. Hence, the product of these weights
corresponds to the total amount that your worth increases from $1 on day one to subI[T]
dollars in state tprod = subI[T] on day T .

(c) In this question, you are to do an example. The following is the price table that you should work
from.
Day 1 2 3 4 5 6 7

Stock 0 5.00 6.00 6.06 6.18 6.00 6.53 6.47
Stock 2 2.00 4.60 4.55 4.47 6.70 6.83 6.90

You are going to draw the graph Gprod, its nodes, edges, weights, optimal costs optCost[t] and
optCost[t, s], bird answers, and optimal path. Like this:

Excel: At first I assumed that you would draw this by hand or some drawing app (I am hooked
on PowerPoint). But the numbers got too tedious for me. I want you to do it in Excel. (NOT
coding it up). See my file test8.xlsx

Time (black): The days and time are given in the first to rows.

Price(t, s) (pink): In rows 3 and 9, I copied in the price table for the two stocks s = 0 and
s = 2. Index 1 is used for cash.

state(t, s) (blue): In rows 4 and 8, I put blue circles to represent the graph Gprod nodes
state(t, s) in which I own the optimal amount of stock s on day t at time 1:03.

state(t) (orange): In row 6, I put orange circles to represent the graph Gprod nodes state(t) in
which I own the optimal amount of cash on day t at time 1:01.

Edges: I drew six example edges. You will have to fill in the rest of them. Or if there are too
many put a bunch of them so that the TA gets the pattern and then put a dot dot dot.
I never did figure out how to draw circles and arrows in Excel. The way I created these
was by making them in PowerPoint and then copying them to Excel. To keep the colours, I
have to click “paste keep formatting”. And when these drawings get in the way of the Excel
equations, I move the drawings out of the way.

Edge Weights (black): For each (or most) of the edge, put in an Excel cells close to the edge
an equation the computes the weight of the edge from the prices.

23

optCost(t, s) (blue): For each node state(t, s), put in the Excel cell within my circle an equation
that computes optCost(t, s), namely the optimal value of stock s that you own on day t at
time 1:03.

optCost(t) (orange): For each node state(t), put in the Excel cell within my circle an equation
that computes optCost(t), namely the optimal amount of cash you have on day t at time
1:01.

birdAdvice(t, s) and birdAdvice(t) (green): Near each node state(t, s), put in the Excel
cell that returns the bird’s advice birdAdvice(t, s), namely which in-edge gave the best answer.
Do the same for birdAdvice(t).
Hint: Try something like = IF (A1 > B2, 0, IF (C1 > B2, 0, 2)).

Path (red): Draw the optimal path on top.

Formulas: I am giving you two copies.
- In the first you give the equation starting with = so that Excel computes the value.
- In the second you give the equation starting with no = so that Excel displays the equation
as text so that the TA can easily read it.
You only need to include one example of every type of equation.

Hand In: Hand in a screen capture of this Excel file.

Fun: For fun, change the price numbers and everything else should change automatically.
I played with the prices so that the optimal thing was to own stock 2 even while it was
dropping in price.

Answer:

24

