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First learn the steps. Then try them on your own. If you get stuck only look at a little of the answer and
then try to continue on your own.

1. Integer-Knapsack Problem:

Instances: An instance consists of 〈V, 〈v1, p1〉 , . . . , 〈vn, pn〉〉. Here, V is the total volume of the knap-
sack. There are n objects in a store. The volume of the ith object is vi, and its price is pi.

Solutions: A solution is a subset S ⊆ [1..n] of the objects that fit into the knapsack, i.e.,
∑

i∈S vi ≤ V .

Measure Of Success: The cost (or success) of a solution S is the total value of what is put in the
knapsack, i.e.,

∑
i∈S pi.

Goal: Given a set of objects and the size of the knapsack, the goal is fill the knapsack with the greatest
possible total price.

Failed Greedy Algorithms: Three obvious greedy algorithms take first the most valuable object, maxi pi,
the smallest object, mini vi, or the object with the highest value per volume, maxi

pi

vi

. However, they
do not work. For each of this greedy algorithms, give an instance on which it does not work.

2. We proved that the greedy algorithm does not work for the making change problem when the denom-
inations of the coins are 4, 3, and 1 cent, but it does work when the denominations are 25, 10, 5, and
1. Does it work when the denominations are 25, 10, and 1, with no nickels?

3. Greedy Algorithms: A man is standing on the bank of a river that he must cross by jumping on stepping
stones which are spread in a line across the river. Though he can’t jump far, he wants to jump on as
few stones as possible. An instance to the problem specifies 〈d0, d1, d2, . . . , dn〉, where d0 = 0 is the
man’s initial location, di for i ∈ [1, .., n− 1] is a real number giving the distance in meters that the ith

stone is from him, and dn is the distance to the opposite shore. Assume that the stones are in order,
i.e. 0 = d0 ≤ d1 ≤ d2 ≤ . . . ≤ dn. Also assume that the stones are not more than one meter apart, i.e.
∀i di+1 − di ≤ 1.

A solution is a sequence 〈i0, i1, i2, . . . iℓ〉 of the indexes of the stones indicating that at time t the man
jumps onto the it

th stone. Such a solution is valid if at time t = 0 the man is in fact on the close shore,
i.e. i0 = 0, he finishes on the far shore, i.e. iℓ = n, and at each time step t′ the distance he jumps is
at most a distance of one meter, i.e. di

t′
− di

t′−1
≤ 1. The cost of a solution is the number ℓ of stones

jumped onto.

Note that the assumption on the input ensures that a valid solution always exists.
Specify a greedy algorithm for finding an optimal solution for this problem. Imagine that you are
crossing a river on stones. How would you choose which stone to jump on next.

As done in the steps, prove that your algorithm always returns an optimal solution.
Warning: To ensure that a solution is valid, you really must check the distance jumped at each time
step t′.

4. Job/event scheduling problem with multiple rooms:
Review the job/event scheduling problem from Section 16.2.1. This problem is the same except
you have r rooms/processors within which to schedule that the set of jobs/events. An instance is
〈r, 〈s1, f1〉 , 〈s2, f2〉 , . . . , 〈sn, fn〉〉, where as before 0 ≤ si ≤ fi are the starting and finishing times for
the ith event. But now the input also specifies the number of rooms r. A solution for an instance is a
schedule S = 〈S1, . . . , Sr〉 for each of the rooms. Each of these consists of a subset Sj ⊆ [1..n] of the
events that don’t conflict by overlapping in time. The success of a solution S is the number of events
scheduled, that is, | ∪j∈[r] S|. Consider the following four algorithms:



(a) Find the greedy solution for the first room. Then find the greedy solution for the second from the
remaining events. Then the third room. And so on.

(b) It starts by sorting the events by their finishing times, just like in the one-room case. Then, it
looks at each event in turn, scheduling it, if possible. If it can be scheduled in more than one
room, we assign it in the first room at which it fits. I.e./ first try room one, then room two, and
so on until it fits. If it cannot be scheduled in any room, then it is not scheduled.

(c) Same except, the next event is scheduled in the room with the latest last-scheduled finishing time.
For example, suppose the last event scheduled in rooms 1, 2, and 3 finishes at times 10, 15, and
18, and the next event starts at time 17. Then the next event could be scheduled into either
room 1 or 2 but not in 3. This algorithm would schedule it in room 2. Note this is the room that
minimizes the gap between starting time of the new job and the finishing time of the previously
scheduled job for the room. Here a gap of size 17− 15 = 2 is better than one of size 17− 10 = 7
or of size 17− 18 = −1.

(d) Same except, the next event is scheduled in the room with the earliest last-scheduled finishing
time. Note this is the room that maximizes the said mentioned gap.

Prove that three of these algorithms do not lead to an optimal schedule and that the remaining one
does.
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