
CSE 3101 Design and Analysis of Algorithms

Solutions for Practice Test for Unit 2
Recursion
Jeff Edmonds

1. We discuss two different purposes and definitions of “size”. The running time of an algorithm is defined
to be a mapping from the size of the input instance to the running time. Here “size” is the number of
bits to represent the instance. If the instance is 〈n,m〉 then size is s = log n + logm. In the friends

level of abstracting recursion, you can give your friend any legal instance that is “smaller” than yours
according to some measure of “size”. You must also solve on your own any instance that is sufficiently
small according to this same definition of size. Here you can design your definition of “size” any way
you like. Note that the number of bits to represent 〈n− 1, 2m〉 is bigger than the number of bits to
represent 〈n,m〉. Is this then a fair subinstance to give your friend? Maybe if you define size differently.
Which of the following recursive algorithms has been designed correctly? If so what is your measure
of the size of the instance? On input instance 〈n,m〉, either bound the depth to which the algorithm
recurses as a function of n and m or prove that there is at least one path down the recursion tree that
is infinite.

algorithm Ra(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0)

Print(”Hi”)
else

Ra(n− 1, 2m)
end if

end algorithm

algorithm Rb(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0)

Print(”Hi”)
else

Rb(n− 1,m)
Rb(n,m− 1)

end if
end algorithm

algorithm Rc(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Rc(n− 1,m)
Rc(n,m− 1)

end if
end algorithm

algorithm Rd(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Rd(n− 1,m+ 2)
Rd(n+ 1,m− 3)

end if
end algorithm

algorithm Re(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Re(n− 4,m+ 2)
Re(n+ 6,m− 3)

end if
end algorithm

• Answer:

(a) One might complain that if my instance is 〈n,m〉 then my friend’s instance cannot be
〈n− 1, 2m〉, because 2m is not “smaller” then m. However, we can define the “size” of
instance 〈n,m〉 to be simply n. According to this measure, my friend’s instance is indeed
smaller. More over when the instance becomes of size zero or smaller, then n ≤ 0 and the
recursion stop. We prove that the depth of recursion is at most n as follows. On instance
〈n,m〉, the size starts at n and decreases by at least one every level of recursion, so after n
levels the size is at most zero and the algorithm stops recursing further. For example, starting
with 〈5, 2〉, it recurses on 〈4, 4〉, 〈3, 8〉, . . . 〈0, 64〉, and then halts.

(b) One might claim that all is well because both friends get instances (〈n− 1,m〉 and 〈n,m− 1〉)
that are smaller. However, for this to be true for both friends, then size must be something



like n + m. However, according to this definition, the instance 〈5,−5〉 is small but the
algorithm does not halt. There is a path down this recursive tree that is infinite, namely
〈n,m〉, 〈n,m− 1〉, 〈n,m− 2〉, . . . 〈n, 1〉, 〈n, 0〉, 〈n,−1〉, 〈n,−2〉 . . ..

(c) Here the size of the instance 〈n,m〉 can be defined to be n+m. According to this measure,
each friend is given a smaller instance. More over if the size on the instance is zero then
either n ≤ 0 or m ≤ 0. Either way the program halts. The depth of recursion can be at most
n+m because this is the initial size and the size decreases by one each iteration.

(d) Let the size of the instance 〈n,m〉 be 5n+2m. Then the first friend’s instance 〈n− 1,m+ 2〉
has size 5(n−1)+2(m+2) = 5n+2m−1, which is one smaller. The second friend’s instance
〈n+ 1,m− 3〉 has size 5(n + 1) + 2(m − 3) = 5n + 2m − 1, which is also one smaller. More
over if the size on the instance is zero then either n ≤ 0 or m ≤ 0. Either way the program
halts. The depth of recursion can be at most 5n+ 2m because this is the initial size and the
size decreases by one each iteration.

(e) I claim that there is a path down this recursion tree that is infinite. If my instance is 〈n,m〉,
then my first friend has 〈n− 4,m+ 2〉, his first friend has 〈n− 8,m+ 4〉, his first friend has
〈n− 12,m+ 6〉, his second friend has 〈n− 6,m+ 3〉, and his second friend has 〈n,m〉 which
is the same as my instance. This can be repeated infinitely often.
It is interesting that the last two examples can be generalized to the friend’s instances be of
size 〈n− a,m+ b〉 and 〈n+ c,m− d〉. If ad > bc then the program halts, else it does not.

2. Review the problem on Iterative Cake Cutting. (Section 2.3) You are now to write a recursive algorithm
for the same problem. You will, of course, need to make the pre and post conditions more general so
that when you recurse, your subinstances meet the preconditions. Similar to moving from insertion
sort to merge sort, you need to make the algorithm faster by cutting the problem in half.

(a) You will need to generalize the problem so that the subinstance you would like your friend to solve
is a legal instance according to the preconditions and so that the post conditions states the task
you would like him to solve. Make the new problem, however, natural. Do not, for example, pass
the number of players n in the original problem or the level of recursion. The input should simply
be a set of players and a sub-interval of cake. The post condition should state the requirements
on how this subinterval is divided among these players. To make the problem easier, assume that
the number of players is n = 2i for some integer i.

(b) Give recursive pseudo code for this algorithm. As a big hint, towards designing a recursive
algorithm, we will tell you the first things that the algorithm does. Each player specifies where
he would cut if he were to cut the cake in half. Then one of these spots is chosen. You need to
decide which one and how to create two subinstances from this.

(c) Be sure to determine the running time.

(d) Formally prove all the steps similar to those for an iterative algorithm needed to prove this
recursive program correct.

(e) Now suppose that n is not 2i for some integer i. How would we change the algorithm so that it
handles the case when n is odd? I have two solutions. One which modifies the recursive algorithm
directly and one that combines the iterative algorithm and the recursive algorithm. You only need
to do one of the two (as long as it works and does not increase the bigoh of the running time.)

• Answer:

(a) See below.

(b)

algorithm Partition(P, [a, b])

〈pre−cond〉: P is a set of players. (For now assume that |P | = 2i for some integer i).
[a, b] ⊆ [0, 1] is a subinterval of the whole cake.

〈post−cond〉: Returns a partitioning of [a, b] into |P | disjoint pieces [ai, bi] so that for each
i ∈ P , the player pi values [ai, bi] at least

1

|P | as much as he values [a, b].
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begin
if(|P | = 1) then return( “allocate [a, b] to the single player in P” )
loop i ∈ P

vi = Eval(pi, [a, b])
ci = Cut(pi, a,

vi

2
)

end loop
cmid = median(ci)
Partition players P into Pleft and Pright so that

|Pleft| = |Pright| =
|P |
2

∀i ∈ Pleft, ci ≤ cmid

∀i ∈ Pright, cmid ≤ ci
return( Partition(Pleft, [a, cmid]) ∪ Partition(Pright, [cmid, b]) )

end algorithm

(c) Give and solve the recurrence relation for the Running Time of this algorithm: If you spend
n log n time sorting the ci, then the recurrence relation is T (n) = 2T (n

2
) + O(n log n) =

O(n log2 n), which is too much. However, the median can be found in O(n) time. The notes
even give a deterministic algorithm for it. This gives T (n) = 2T (n

2
)+O(n) = O(n log n), just

like for merge sort.

(d) Formal proof steps:

i. Prove that if your instance meets the preconditions, then your two subinstances also meet
the preconditions: Clearly, each subinstance is given a subinterval of the whole cake. If
|P | is a power of 2 and |P | is partitioned in half then the number of players given to each
subinstance is a power of two. The only slightly tricky thing is to make sure that this is
possible. Sort the elements in P according to ci. |P | being even, there is not an exact
middle player. Let pmid be the player to the left of the middle, let Pleft consist of pmid

and everyone to the left of him, and let Pright consist of everyone to the right of pmid. By
this more detailed construction, it is more clear that the three conditions of the partition
are met.

ii. Prove that the subinstances that you give to you friends are in some way “smaller” than
your instance: There are fewer players being considered.

iii. Prove that if your friend’s solutions meet the postconditions, then your solution meets the
postcondition: If the friends return a partitioning of [a, cmid] and [cmid, b] into |Pleft| and
|Pright| disjoint pieces each, then we return a partitioning of [a, b] = [a, cmid] ∪ [cmid, b]
into |P | = |Pleft| + |Pright| disjoint pieces. Consider a player pi ∈ Pleft. Our left friend
allocates him a pieces [ai, bi] that he values at least 1

|Pleft|
= 2

|P | as much as he values

[a, cmid]. Because ci ≤ cmid, he values [a, cmid] at least as much as [a, ci]. Because he
cut [a, b] in half at ci, he values [a, ci] at least 1

2
as much as he values [a, b]. Combining

these, he values [ai, bi] at least
1

|P | as much as he values [a, b]. The case for a right player

is similar.
Note that splitting the cake at a random ci would not work because if you give your friend
one too many players than they will not each be given enough.

iv. Prove that your solution for the base case meets the postconditions. If |P | = 1 = 20, then
allocating all of [a, b] to this one player, partitions [a, b] into |P | = 1 disjoint pieces so this
one player values his piece [a, b] at least 1

|P | = 1 as much as he values [a, b].

(e) Here are two solutions when n is not a power of 2.

i. Instead of everyone marking their half point ci, each player marks the point of value n−1

2n
.

Then the players are partitioned so that n−1

2
of the players are happy recursing on the

left and n+1

2
are happy recursing on the right. Because the left is worth at least n−1

2n
to

a player on the left and recursively he gets at least 1/n−1

2
of the left, it follows that he

gets n−1

2n
× 1/n−1

2
= 1

n
of the cake. Because the right is worth at least n+1

2n
to a player

on the right and recursively he gets at least 1/n+1

2
of the left, it follows that he gets

n+1

2n
× 1/n+1

2
= 1

n
of the cake.
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ii. If n is odd, you can do one step of the iterative algorithm so that there are only n − 1
players left. Because n − 1 is even, you can partition these players evenly in half and
recurse. The work you do is O(n) for the one iterative step and O(n) for the portioning
for a total of T (n) = 2T (n

2
) +O(n) +O(n) = O(n log n).

3. Develop an algorithm that searches for a key within a binary search tree.

• Answer: Search Binary Search Tree: This problem searches for a key within a given binary
search tree.
Recall that in a binary search tree the nodes are ordered such that for each
node all the elements in its left subtree are smaller than its own element and
all those in the right are larger. The following recursive algorithm directly
mirrors the iterative algorithm.

14

25

21

82

5

algorithm SearchBST (tree, keyToF ind)

〈pre−cond〉: tree is a binary tree whose nodes contain key and data fields. keyToF ind is a
key.

〈post−cond〉: If there is a node with this key is in the tree, then the associated data is returned.

begin
if( tree = emptyTree ) then

result “key not in tree”
else if( keyToF ind < rootKey(tree) ) then

result( SearchBST (leftSub(tree), keyToF ind) )
else if( keyToF ind = rootKey(tree) ) then

result( rootData(tree) )
else if( keyToF ind > rootKey(tree) ) then

result( SearchBST (rightSub(tree), keyToF ind) )
end if

end algorithm

4. Trace out the execution of Derivative on the instance

f = (x/x)/x. In other words, draw a tree with a box for each time a routine is
called. For each box, include only the function f passed and derivative returned.
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D

• Answer:
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   Out: B’ = 1             Out: C’ = 1 
   In:  B  = x             In:  C  = x     

     Out: A’ = [B’*C − B*C’]/[C*C]          Out: D’ = 1 
     In:  A  = B/C                          In:  D  = x     

                       Out: f’ = [A’*D − A*D’]/[D*D] 
                       In:  f  = A/D                 

5. Recursion GCD: Write a recursive program to find the GCD of two numbers. The program should
mirror the iterative algorithm.
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• Answer: Given the integers a and b, the iterative algorithm creates two numbers x = b and
y = a mod b. It notes that GCD(a, b) = GCD(x, y), and hence it can return GCD(x, y) instead of
GCD(a, b). This algorithm is even easier when you have a friend. We simply give the subinstance
〈x, y〉 to the friend and he computes GCD(x, y) for us. For the iterative algorithm, we need to
make sure we are “making progress” and for the recursive algorithm, we need to make sure that
we give the friend a “smaller” instance. Either way, we make sure that in some way 〈x, y〉 is
smaller than 〈a, b〉. For the iterative algorithm, we need an exit condition that we are sure to
eventually meet and for the recursive algorithm, we need bases cases such that every possible
instance is handled. Either way, we consider the case when y or b is zero. The resulting code is

algorithm GCD(a, b)

〈pre−cond〉: a and b are integers.

〈post−cond〉: Returns GCD(a, b).

begin
if(b = 0) then

return( a )
else

return( GCD(b, a mod b) )
end if

end algorithm

We get the recurrence relation as follows. There is one friend so a = 1.
(Note not the a and b from the code.)
The value goes down by a factor of two every other iteration, so lets say that the size n = # of
bits gets smaller by half a bit to n− b = n− 1

2
.

Note that this is an additive difference not a multiplicative difference so we use the bottom chart
of unit 0 steps.
I personally do f(n) = Θ(1) mod operations.
The recurrence relation is
T (n) = a · T (n− b) + f(n) = 1 · T (n− 1

2
) + Θ(1).

Because a = 1, the table gives
T (n) = Θ(n · f(n)) = Θ(n),
but it is easy to solve on our own.
T (n) = T (n− 1

2
) + 1 = T (n− 2 · 1

2
) + 2 = T (n− 3 · 1

2
) + 3 = T (n− r · 1

2
) + r = T (0) + 2n.

A theory person would instead say that we do not one mod operation but f(n) = Θ(n) bit
operations.
Then the time is T (n) = Θ(n2).

6. Recursion Smallest: Explain the recursive algorithm given in class for finding the kth smallest element
in an array. Explain what the running time is.

• Answer: Ignoring input k, a pivot element is chosen randomly, and the list is split into two
sublists, the first containing all elements that are all less than or equal to the pivot element and
the second those that are greater than it. Let nleft be the number of elements in the first sublist.
If nleft ≥ k, then we know that the kth smallest element from the entire list is also the kth smallest
element from the first sublist. Hence, we can give this first sublist and this k to a friend and ask
him to find it. On the other hand, if nleft < k, then we know that the kth smallest element
from the entire list is the (k−nleft)

th smallest element from the second sublist. Hence, giving the
second sublist and k−nleft to a friend, he can find it.

In a little bad but still random looking case, the recurrence relation is T (n) = 1T ( 2
3
n) + Θ(n).

The number of base cases is Θ(n
log a
log b ) = Θ(n

log 1

log 3/2 ) = Θ(n0) = 1. The work at the top is
Θ(nc) = Θ(n1). Note 1 > 0. Hence, the time is dominated by the top level giving T (n) = Θ(n).

5



7. Recursion Smallest in Tree: Our task now is the same as the last question, except that the input is a
binary search tree and an integer k. Recall that in a binary search tree all the values smaller than the
root are already in the left subtree and all those larger are in the right. As before, it returns the kth

smallest element in the tree. Explain what the running time is.

• Answer: The same basic algorithm will be used. We won’t, however, have to choose a pivot
element or partition the nodes because the root of the tree already splits the nodes in this way.
The algorithm without change would then be as follows. Let nleft denote the number of elements
in the left subtree. If k ≤ nleft, then we give our left friend our left subtree and the same k. He
returns the answer. If k = nleft + 1, then the answer is the root. If nleft + 1 < k ≤ n, then we
give our right friend our right subtree with the new kright = k − nleft − 1.

The problem is that this algorithm needs to know nleft before it starts. We could call an extra
program to count this number but this would take to much extra time. Hence, we simply get our
left friend to return this information as well. To do this we need to change the post conditions
so that the number of nodes in the tree are also returned. Once this is done, we and our right
friend must do the same. In the above algorithm, only one of the two friends is called. However,
because both must now return the number of nodes, both must be called. One might be tempted
compare k to nleft as soon as it is found, but the left and right friends might as well be called
first. No harm done if their k is out of their range. At the end, one can test whether the left,
root, or right answer is correct.

If the tree is empty, then the element being looked for is clearly not there and the number of
elements is zero.

algorithm Smallest(tree, k)

〈pre−cond〉: tree is a binary search tree and k is an integer.

〈post−cond〉: Outputs the kth smallest element s and the number of elements n.
If this index is out of range, we output s = NotPossible.

begin
if( tree = emptyTree ) then

result( 〈NotPossible, 0〉 )
else

〈sl, nl〉 = Smallest(leftSub(tree), k)
% There are nl + 1 nodes before the right subtree
〈sr, nr〉 = Smallest(rightSub(tree), k − (nl + 1))
n = nl + 1 + nr

if( k ∈ [1..nl] )then
s = sl

elseif( k = nl + 1 )then
s = root(tree)

elseif( k ∈ [nl + 2..n] )then
s = sr

else then
s = OutOfRange

endif
result( 〈s, n〉 )

end if
end algorithm

6



Here is another version that only calls to the right if necessary. Note that the post condition
changes.

algorithm Smallest(tree, k)

〈pre−cond〉: tree is a binary search tree and k > 0 is an integer.

〈post−cond〉: Outputs the kth smallest element s.
If k is more than the number of elements in the tree, then we output s =′′ toobig′′ and the
number of elements n is also returned.

begin
if( tree = emptyTree ) then

result( 〈toobig, 0〉 )
〈sl, nl〉 = Smallest(leftSub(tree), k)
if( sl 6= toobig ) then

result( 〈sl, ?〉 )
% Because sl = toobig, we know that nl is the number of nodes in the left subtree
if( k = nl + 1 ) then

result( 〈root(tree), ?〉 )
〈sr, nr〉 = Smallest(rightSub(tree), k − (nl + 1))
result( 〈sl, nl + 1 + nr〉 )

end algorithm

The running time is still Θ(n) as it is for all recursive programs on binary trees that recurse on
the both the left and right subtrees and do a constant amount of work in each stack frame.

8. The algorithm TreeToMatrix(tree,M, i, j) is passed a non-empty tree tree, a matrix M (which is
passed both in and out), and two indexes i and j. The result of the algorithm is to place the data
items in the tree tree into the matrix M . The data item at the root, denoted rootData(tree), is placed
in M(i, j). Its children, denoted child(tree, 1), child(tree, 2), . . . , child(tree, nChild(tree)), are placed
one column to the right. Its first child is placed just to the right of the root in M(i, j+1). Its other
children are shifted down to make room for the subtrees rooted at the previous children. An example is
given below, with the input tree on the left and the resulting matrix on the right. Be sure to document
any extensions you make to the pre or post conditions. Only the commented code is required. MORE
DISCUSSION ALLOWED.

1133 1211 1212 1213 1221 122211321111 1112 1113 1114 1121 1122 1131 

1

132131122121113112111

11 1312

i/j 1 2 3 4

1 1 11 111 1111

2 1112

3 1113

4 1114

5 112 1121

6 1122

7 113 1131

8 1132

9 1133

10 12 121 1211

11 1212

12 1213

13 122 1221

14 1222

15 13 131

16 132

• Answer: I put my root at 〈i, j〉. I trust my first friend to put his tree at 〈i, j + 1〉. TRUST
HIM. DONT MICRO MANAGE HIM. Then I must trust my second friend must put his tree at
〈k, j + 1〉 for some strange k. But it is my job to tell him what k is. Who knows k? It depends
on the first tree. In fact, we need to shift by the number of leaves in the first tree. Only my first
friend knows the first tree. Hence, I trust him to tell me this information as well. But then I must
put this in the post condition and also compute this information. Dont have the postcondtion
something strange like “where the next item goes”. It needs to be a well defined function of my
input. I kept asking people, “What value k should you return, given you have the entire tree”,
but they did not know. I kept seeing ++i, which looked global and iterative to me. ++i in the
loop over the children just increases to three.

algorithm TreeToMatrix(tree,M, i, j)
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〈pre−cond〉: tree is a tree, M a matrix, and i and j are indexes into the matrix M .

〈post−cond〉: The data items in tree are placed in M with the root at M(i, j). Returned is
the number of leaves in the tree. Note that this is the number of rows used in the matrix.

begin
M(i, j) = rootData(tree)
if( nChild(tree) = 0 ) then return(1)
nLeaves = 0
loop r = 1 . . . nChild(tree)

nLeaves += TreeToMatrix(child(tree, r),M, i+ nLeaves, j+1)
return(nLeaves)

end algorithm

9. Recursion Inversions: Given a sequence of n distinct numbers A = 〈a1, a2, . . . , am〉, we say that ai and
aj are inverted if i < j but ai > aj . The number of inversions in the sequence A, denoted I(A), is the
number of pairs ai and aj that are inverted. I(A) provides a measure of how close A is to being sorted
in increasing order. For example, if A is already sorted in increasing order, then I(A) is 0. At the other
extreme, if A is sorted in decreasing order, every pair is inverted, and thus I(A) is

(

n
2

)

. Describe a
divide and conquer algorithm that finds I(A) in time Θ(nlogn). You should assume that the sequence
A is given to us in an array such that we can test the value of ai in unit time, for any i. Note that the
obvious algorithm is to test all pairs ai and aj ; that algorithm runs in Θ(n2) time. Hint: you should
modify merge sort to also compute I(A). The work each stack frame requires an iterative algorithm.
Describe this iterative algorithm using loop invariants.

• Answer: The recursive algorithm is given an array A and returns 〈S, I〉, where S is the array
sorted and I is is the number of inversions I(A). When A contains at least 2 elements, the code
cuts the input A into two halves A1 and A2 and recurses on both. Let 〈S1, I1〉 and 〈S2, I2〉 be
their output. The code then calls an iterative algorithm that takes as input two sorted arrays
S1 and S2 and returns

〈

S, I〈1,2〉
〉

, where S = merge(S1, S2) is the merging of these and I〈1,2〉
is I(S1 + S2) which is the number of inversions in the array containing S1 followed by S2. The
output of the recursive algorithm is

〈

S, I1 + I2 + I〈1,2〉
〉

.

The code for the iterative algorithm maintains two three sorted arrays S′
1, S

′
2, and S′ and one in-

teger I ′. The first loop invariant is that merge(S′
1, S

′
2)+S′ is the merged array S = merge(S1, S2)

that we need to output. The second loop invariant is that I(S′
1 + S′

2) + I ′ is the number of in-
versions I〈1,2〉 = I(S1 + S2) that we need to output. We establish this easily by setting S′

1 = S1,
S′
2 = S2, S

′ = ∅, and I ′ = 0.

The step is as follows. Let a〈|S′

1|,1〉
be the last elements of S′

1 and a〈|S′

2|,2〉
be the last elements

of S′
2. There are two cases. If a〈|S′

1|,1〉
> a〈|S′

2|,2〉
, then because S2 is sorted, a〈|S′

1|,1〉
is greater

than all elements in S2. Just as in the standard merging algorithm, a〈|S′

1|,1〉
is removed from the

end of S′
1 and added to the beginning of S. This maintains the first loop invariant. The element

a〈|S′

1|,1〉
contributes |S2| to I(S′

1, S
′
2) because it creates an inversion with each of the elements of

S2. Hence, we maintain the second loop invariant by adding |S2| to I ′.

In the second case, a〈|S′

1|,1〉
≤ a〈|S′

2|,2〉
. In this case, a〈|S′

2|,2〉
is greater or equal to all elements in

S1. Just as in the standard merging algorithm, a〈|S′

2|,2〉
is removed from the end of S′

2 and added

to the beginning of S. This maintains the first loop invariant. The element a〈|S′

2|,2〉
contributes

zero to I(S′
1, S

′
2) because it creates an inversion with none of the elements of S1. Hence, we

maintain the second loop invariant by adding nothing to I ′.

The exit condition is when one of S′
1 or S′

2 is empty. This will eventually occur because the sum
of their lengths deceases by one each iteration.

We establish the post condition as follows. By the exit condition, one of S′
1 or S

′
2 is empty. Assume

S′
1 is empty. (The other case is the same.) This gives that merge(S′

1, S
′
2) is simply S′

2 and hence
merge(S′

1, S
′
2) + S′ = S′

2 + S′. The first loop invariant gives that this is the required output S.
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Hence, the first post condition is maintained by outputting S = S′
2+S′. Having S′

1 empty and S′
2

sorted gives us that the number of inversion I(S′
1+S′

2) is zero and hence I(S′
1+S′

2)+ I ′ = I ′ The
second loop invariant gives that this is the number of inversions I〈1,2〉 that we need to output.
Hence, the second post condition is maintained by outputting I〈1,2〉 = I ′.
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