
CSE 3101 Design and Analysis of Algorithms

Practice Test for Unit 2
Recursion
Jeff Edmonds

First learn the steps. Then try them on your own. If you get stuck only look at a little of the answer and
then try to continue on your own.

1. We discuss two different purposes and definitions of “size”. The running time of an algorithm is defined
to be a mapping from the size of the input instance to the running time. Here “size” is the number of
bits to represent the instance. If the instance is 〈n,m〉 then size is s = log n + logm. In the friends

level of abstracting recursion, you can give your friend any legal instance that is “smaller” than yours
according to some measure of “size”. You must also solve on your own any instance that is sufficiently
small according to this same definition of size. Here you can design your definition of “size” any way
you like. Note that the number of bits to represent 〈n− 1, 2m〉 is bigger than the number of bits to
represent 〈n,m〉. Is this then a fair subinstance to give your friend? Maybe if you define size differently.
Which of the following recursive algorithms has been designed correctly? If so what is your measure
of the size of the instance? On input instance 〈n,m〉, either bound the depth to which the algorithm
recurses as a function of n and m or prove that there is at least one path down the recursion tree that
is infinite.

algorithm Ra(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0)

Print(”Hi”)
else

Ra(n− 1, 2m)
end if

end algorithm

algorithm Rb(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0)

Print(”Hi”)
else

Rb(n− 1,m)
Rb(n,m− 1)

end if
end algorithm

algorithm Rc(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Rc(n− 1,m)
Rc(n,m− 1)

end if
end algorithm

algorithm Rd(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Rd(n− 1,m+ 2)
Rd(n+ 1,m− 3)

end if
end algorithm

algorithm Re(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Re(n− 4,m+ 2)
Re(n+ 6,m− 3)

end if
end algorithm

2. Review the problem on Iterative Cake Cutting. (Section 2.3) You are now to write a recursive algorithm
for the same problem. You will, of course, need to make the pre and post conditions more general so
that when you recurse, your subinstances meet the preconditions. Similar to moving from insertion
sort to merge sort, you need to make the algorithm faster by cutting the problem in half.

(a) You will need to generalize the problem so that the subinstance you would like your friend to solve
is a legal instance according to the preconditions and so that the post conditions states the task
you would like him to solve. Make the new problem, however, natural. Do not, for example, pass
the number of players n in the original problem or the level of recursion. The input should simply
be a set of players and a sub-interval of cake. The post condition should state the requirements



on how this subinterval is divided among these players. To make the problem easier, assume that
the number of players is n = 2i for some integer i.

(b) Give recursive pseudo code for this algorithm. As a big hint, towards designing a recursive
algorithm, we will tell you the first things that the algorithm does. Each player specifies where
he would cut if he were to cut the cake in half. Then one of these spots is chosen. You need to
decide which one and how to create two subinstances from this.

(c) Be sure to determine the running time.

(d) Formally prove all the steps similar to those for an iterative algorithm needed to prove this
recursive program correct.

(e) Now suppose that n is not 2i for some integer i. How would we change the algorithm so that it
handles the case when n is odd? I have two solutions. One which modifies the recursive algorithm
directly and one that combines the iterative algorithm and the recursive algorithm. You only need
to do one of the two (as long as it works and does not increase the bigoh of the running time.)

3. Develop an algorithm that searches for a key within a binary search tree.

4. Trace out the execution of Derivative on the instance

f = (x/x)/x. In other words, draw a tree with a box for each time a routine is
called. For each box, include only the function f passed and derivative returned.
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5. Recursion GCD: Write a recursive program to find the GCD of two numbers. The program should
mirror the iterative algorithm.

6. Recursion Smallest: Explain the recursive algorithm given in class for finding the kth smallest element
in an array. Explain what the running time is.

7. Recursion Smallest in Tree: Our task now is the same as the last question, except that the input is a
binary search tree and an integer k. Recall that in a binary search tree all the values smaller than the
root are already in the left subtree and all those larger are in the right. As before, it returns the kth

smallest element in the tree. Explain what the running time is.

8. The algorithm TreeToMatrix(tree,M, i, j) is passed a non-empty tree tree, a matrix M (which is
passed both in and out), and two indexes i and j. The result of the algorithm is to place the data
items in the tree tree into the matrix M . The data item at the root, denoted rootData(tree), is placed
in M(i, j). Its children, denoted child(tree, 1), child(tree, 2), . . . , child(tree, nChild(tree)), are placed
one column to the right. Its first child is placed just to the right of the root in M(i, j+1). Its other
children are shifted down to make room for the subtrees rooted at the previous children. An example is
given below, with the input tree on the left and the resulting matrix on the right. Be sure to document
any extensions you make to the pre or post conditions. Only the commented code is required. MORE
DISCUSSION ALLOWED.
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9. Recursion Inversions: Given a sequence of n distinct numbers A = 〈a1, a2, . . . , am〉, we say that ai and
aj are inverted if i < j but ai > aj . The number of inversions in the sequence A, denoted I(A), is the
number of pairs ai and aj that are inverted. I(A) provides a measure of how close A is to being sorted
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in increasing order. For example, if A is already sorted in increasing order, then I(A) is 0. At the other
extreme, if A is sorted in decreasing order, every pair is inverted, and thus I(A) is

(

n

2

)

. Describe a
divide and conquer algorithm that finds I(A) in time Θ(nlogn). You should assume that the sequence
A is given to us in an array such that we can test the value of ai in unit time, for any i. Note that the
obvious algorithm is to test all pairs ai and aj ; that algorithm runs in Θ(n2) time. Hint: you should
modify merge sort to also compute I(A). The work each stack frame requires an iterative algorithm.
Describe this iterative algorithm using loop invariants.

3


