
CSE 3101 Design and Analysis of Algorithms

Solutions for Practice Test for Unit 1
Loop Invariants and Iterative Algorithms

Jeff Edmonds

1. Tiling Chess Board: You are given a 2n by 2n chess board. You have many tiles each of which can
cover two adjacent squares. Your goal is to place non-overlapping tiles on the board to cover each of the
2n × 2n tiles except for to top-left corner and the bottom-right corner. Prove that this is impossible.
To do this give a loop invariant that is general enough to work for any algorithm that places tiles.
Hint: chess boards color the squares black and white.

• Answer:

Precond: The board is empty.

Postcond: All but the corner two white tiles is covered.

Define Loop Invariant: The number of blacks and white tiles covered is equal.

Establishing the Loop Invariant: 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉: By
〈pre−cond〉 there are zero white and zero blacks covered. Hence, these numbers are the
same.

Step: Place a tile. This covers one white and one black square.

Maintaining the Loop Invariant: 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉: By 〈loop−invariant′〉, at the beginning of the iteration the number
of white and black tiles covered are equal. The step covers one more white and one more
black. Hence, after the iteration the numbers are still equal.

Exit: Exit when ever you like.

Ending: Obtaining that the postcondition is NEVER met.
i.e. 〈loop−invariant〉 ⇒ ¬ 〈post−cond〉
Prove the contra positive,
i.e. 〈post−cond〉 ⇒ ¬ 〈loop−invariant〉:
Assume that the post condition is true. It states that all but the corner two white tiles
is covered. However, the board has an equal number of black and white tiles. Hence, the
number of white and black tiles covered are not equal. Hence, the LI is not true.

2. Loop Invariants
Longest Contiguous Increasing Subsequence (LCIS): The input consists of a sequence A[1..n] of integers
and we want to find a longest contiguous subsequence A[k1..k2] such that the elements are strictly

increasing. For example, the optimal solution for [5, 3, 1, 3, 7, 7, 9, 8] is [1, 3, 7].

(a) (5 marks) Provide a tight lower bound on the running time for this problem. Prove that your
answer is indeed a tight lower bound.

• Answer: The problem takes at least Ω(n) time because the input needs to be read. Let A
be an arbitrary algorithm. Give it the input consisting of all zero. If it does not read some
integer, change this integer to a 1 (If it is the first integer change it to -1). It answers the
same longest length in both cases, however, in the first the longest has length one an in the
second two. Therefore, it is wrong in at least one of these cases.

(b) (5 marks) Specify an appropriate loop-invariant, measure of progress and exit condition for an
iterative solution to this problem. No explanations are necessary.

• Answer: LI: We maintain an over all optimal LCIS found so far and the LSIS that we are
currently working on.
A[k1 . . . k2] is an LCIS of A[1 . . . i] and A[p . . . i] is the LCIS of A[1 . . . i] that ends at i.
Note the first LI is “More of the Input”, namely if we consider the prefix A[1 . . . i] to be the

entire input then we have the solution.
Most people missed the second one, but it is needed if the LI is to be maintained.
Measure of Progress: the number i of elements read. Many gave that i increases. This is
progress, but not a measure.
Exit Condition: When all the elements have been read because i = n.

(c) (10 marks) Provide concise pseudo-code for an algorithm LCIS(A,n) that returns the indices
k1, k2 of the LCIS of A[1 . . . n] uses the loop-invariant, measure of progress and exit condition you
specified above. Assume n ≥ 1.

• Answer:
I thought more about why LI are important to me. It is a life philosophy. It is about feeling
grounded. Most of the code I marked today makes me feel ungrounded. It cycles, but I don’t
know what the variables mean, how they fit together, where the algorithm is going, or how
to start thinking about it. Loop invariants are about starting my day at home, where I know
what is true and what things mean. Loop invariants are also about returning back full circle
back to my safe home at the end of my day

algorithm [k1, k2] =LCIS(A,n)

〈pre−cond〉: A[1 . . . n] is an array of integers

〈post−cond〉: A[k1 . . . k2] is an LCIS of A[1 . . . n]

begin
k1 = k2 = p = i = 1
loop

〈loop−invariant〉: A[k1 . . . k2] is an LCIS of A[1 . . . i] and
A[p . . . i] is the LCIS of A[1 . . . i] that ends at i

i = i+ 1
if(A[i−1] ≥ A[i]) then

p = i
end if
if (q − p) > (k2 − k1)

k1 = p
k2 = q

end if
end if

end algorithm

(d) (6 marks) Provide an informal argument for how your code is able to maintain the loop invariant.
A formal proof is not required.

• Answer: 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒ 〈loop−invariant′′〉
Suppose at the beginning of an iteration, the LI is true for the current values, i.e. A[k′1 . . . k

′
2]

is an LCIS of A[1 . . . i′] and A[p′ . . . i′] is the LCIS of A[1 . . . i′] that ends at i′.
The first block of code either extends the LCIS that we are currently working on from
A[p′ . . . i′] to A[p′ . . . i′+1] or shrinks it to contain only the one element A[i′+1] depend-
ing on whether or not A[i′+1] is bigger than A[i′]. This is achieved by moving its end point
from i′ to i′′ = i′+1 and either leaving its begging at p′′ = p′ or moving it to p′′ = i′′. Either
way, the LI is maintained that A[p′′ . . . i′′] is the LCIS of A[1 . . . i′′] that ends at i′′.
The second block of code updates the over all LCIS found so far simply by moving it to the
current one, if the current one has grown to be larger. Either way, the LI is maintained that
A[k′′1 . . . k

′′
2] is an LCIS of A[1 . . . i′′]

(e) (6 marks) What are the other key steps in proving your algorithm correct? List and provide a
concise proof for each.

• Answer:
Establishing the LI: 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉.

2

On entry, k1 = k2 = p = i = 1. Thus the first part of the loop-invariant requires that A[1] be
an LCIS of A[1], which is trivially true. The second part of the loop invariant requires that
A[1] is the LCIS of A[1] that ends at location 1, which is also trivially true.
Making Progress: i increments by 1 on each iteration. Program exits when i = n.
Establishing Post-Condition: 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉. When i = n, the first LI gives that A[k1 . . . k2] is an LCIS of A[1 . . . n], which
is the post condition.

3. d+ 1 Colouring: Given an undirected graph G such that each node has at most d neighbors, colour
each node with one of d + 1 colours so that for each edge the two nodes have different colours. Hint:
Don’t think too hard. Just colour the nodes. What loop invariant do you need?
Hint: All it will say is that you have not gone wrong yet.
Give all the steps done in class to develop this iterative algorithm.

• Answer:

Loop Invariant The only loop invariant that you need is that after colouring i nodes, you have
not yet coloured the two nodes of an edge with the same colour.

Establishing the Loop Invariant 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉:
codepre−loop : Initially, i = 0 nodes have been coloured, so the LI is trivially true.

Steps: Grab any uncoloured node v. It has at most d neighbors some of which might already be
coloured. However, at most d different colours different colours can be already used by these
neighbors. Colour v with one of the other d+ 1 colours.

Maintaining the Loop Invariant 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉:
By the LI’, we had coloured i nodes without any bichromatic edges. We proved that the step
manages to colour and i+ 1st node so that it has a different colour than its neighbors. This
reestablishes the LI with i+ 1 nodes coloured.

Measure of Progress and Time: The measure of progress is the number of coloured nodes.
Each of the n iterations will take at most O(d) time for a total of at most O(dn) time.

Obtaining the postcondition 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
By exit condition, i = n.
By LI, all these nodes have been coloured without bichromatic edges.
Hence we have coloured the entire graph without them. This establishes the post condition.

In Sides or Videos

4. (Answer in slides)
Iterative Cake Cutting: The famous algorithm for fairly cutting a cake in two is for one person
to cut the cake in the place that he believes is half and for the other person to choose which “half”
he likes. One player may value the icing more while the other the cake more, but it does not matter.
The second player is guaranteed to get a piece that he considers to be worth at least a half because he
choose between two pieces whose sum worth for him is at least a one. Because the first person cut it
in half according to his own criteria, he is happy which ever piece is left for him. Our goal is write an
iterative algorithm which solves this same problem for n players.

To make our life easier, we view a cake not as three dimensional thing, but as the line from zero to
one. Different players value different subintervals of the cake differently. To express this, he assigns
some numeric value to each subinterval. For example, if player pi’s name is written on the subinterval
[i−1

2n
, i
2n

] of cake then he might allocate a higher numeric value to it, say 1

2
. The only requirement is

that the sum total value of the cake is one.

3

Your algorithm is only allowed the following two operations. In an evaluation query, v = Eval(p, [a, b]),
the algorithm asks a player p how much v he values a particular subinterval [a, b] of the whole cake
[0, 1]. In a cut query, b = Cut(p, a, v), the protocol asks the player p to identify the shortest subinterval
[a, b] starting at a given left endpoint a, with a given value v. In the above example, Eval(pi, [

i−1

2n
, i
2n

])

returns 1

2
and Cut(pi,

i−1

2n
, 1

2
) returns i

2n
. Using these the two player algorithm is as follows.

algorithm Partition2({p1, p2}, [a, b])

〈pre−cond〉: p1 and p2 are players.
[a, b] ⊆ [0, 1] is a subinterval of the whole cake.

〈post−cond〉: Returns a partitioning of [a, b] into two disjoint pieces [a1, b1] and [a2, b2] so that player
pi values [ai, bi] at least half as much as he values [a, b].

begin
v1 = Eval(p1, [a, b])
c = Cut(p1, a,

v1

2
)

if(Eval(p2, [a, c]) ≤ Eval(p2, [c, b])) then
[a1, b1] = [a, c] and [a2, b2] = [c, b]

else
[a1, b1] = [c, b] and [a2, b2] = [a, c]

end if
return([a1, b1] and [a2, b2])

end algorithm

The problem that you must solve is the following

algorithm Partition(n, P)

〈pre−cond〉: P is a set of n players.
Each player in P values the whole cake [0, 1] by at least one.

〈post−cond〉: Returns a partitioning of [0, 1] into n disjoint pieces [ai, bi] so that for each i ∈ P , the
player pi values [ai, bi] by at least 1

n
.

begin
. . .
end algorithm

(a) Can you cut off n pieces of cake, each of size strictly bigger than 1

n
, and have cake left over? Is it

sometimes possible to allocated a disjoint piece to each player, each worth by the receiving player
much more than 1

n
, and for there to still be cake left? Explain.

(b) Give all the required steps to describe this LI algorithm. (Even if you do not know how to do a
step for this algorithm, minimally state the step.)

As a big hint to designing an iterative algorithm, we will tell you what the first iteration accom-
plishes. (Later iterations may do slightly modified things.) Each player specifies where he would
cut if he were to cut off the first 1

n
fraction of the [a, b] cake. The player who wants the smallest

amount of this first part of the cake is given this piece of the cake. The code for this is as follows.

loop i ∈ P
ci = Cut(pi, 0,

1

n
)

end loop
imin = the i ∈ P that minimizes ci

[aimin
, bimin

] = [0, cimin
]

As a second big hint, your loop invariant should include:

4

i. How the cake has been cut so far.

ii. Who has been given cake and how do they feel about it.

iii. How do the remaining players feel about the remaining cake.

• Answer:

(a) Extra question: Clearly the first task is impossible because summing up n things of size more
than 1

n
gives you at a total more than one. There can be none left over. However, the second

is possible. Consider the example given above in which for each i, Eval(pi, [
i−1

2n
, i
2n

]) returns
1

2
. This subinterval [i−1

2n
, i
2n

] can be allocated to this player. These intervals are disjoint,
valued much more than 1

n
by this player, and the interval [1

2
, 1] is left over.

(b) Define Loop Invariant:

i. First remember the more of the output type of loop invariant. This would be as follows.
There is a set of players Q that have been served. The beginning [0, a] of the cake has
been partitioned into |Q| disjoint pieces. Each player pi ∈ Q has been allocated a piece
[ai, bi] worth at least 1

n
to him.

ii. Now remember the Fairy God Mother type of loop invariant. I have arrived from Mars,
some amount of progress has been made already and my Fairy God Mother has set the
state of the computation to be just what I want so that I feel as comfortable as I could
be given the amount of progress that has been made. This would be as follows.

The remaining [a, 1] interval of the cake is worth at least least n−|Q|
n

to each of the
remaining players, i.e. to those in P −Q.

This is a more of the output loop invariant if you think of the output being ordered by who
gets the first piece, who gets the second, and so on.

(c) Establishing the Loop Invariant 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉:
With a = 0 and Q = ∅, the beginning zero [0, 0] of the cake has been partitioned into disjoint
pieces and allocated to |Q| = 0 of the players. All [0, 1] of the cake remains and by the

precondition is worth at least least n−|Q|
n

= 1 to each of the players.

(d) Define the Step (actually I will give the entire code):

algorithm Partition(P)

〈pre−cond〉: As above

〈post−cond〉: As above

begin
a = 0 and Q = ∅
loop

〈loop−invariant〉: As above.

exit when |Q| = n
loop i ∈ P −Q

ci = Cut(pi, a,
1

n
)

end loop
imin = the i ∈ P −Q that minimizes ci
[aimin

, bimin
] = [a, cimin

]
a = cimin

Q = Q+ imin

end loop
return all parts [ai, bi] for each i ∈ P

end algorithm

(e) Maintaining the Loop Invariant 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉:
Let a′ and P ′ be the values at the top of the loop and let a′′ and Q′′ be the values after going
around again. By the code, a′′ = cimin

and Q′′ = Q′ + imin.

5

i. By 〈loop−invariant′〉 the beginning [0, a′] of the cake has been partitioned into |Q′|
disjoint pieces. By the code, we just partitioned off the piece [a′, a′′]. Hence, the beginning
[0, a′′] of the cake has been partitioned into |Q′|+ 1 = |Q′′| disjoint pieces.

ii. By 〈loop−invariant′〉, each player pi ∈ Q′ has been allocated a piece worth at least 1

n
to

him. We just just allocated a piece of this value to another player and added him to Q′.
Hence, each player pi ∈ Q′′ has been such a piece.

iii. Consider a remaining player pi in P − Q′′ = P − Q′ − imin. Because he marked it, we
know that this player values the piece [a′, ci] by

1

n
. The piece [a′, cimin

] = [a′, a′′] cut
off is smaller than this, because cimin

is smaller than ci. Hence, player pi values the
piece [a, a′′] by at most 1

n
. By 〈loop−invariant′〉, the remaining [a′, 1] interval of the

cake is worth at least n−|Q′|
n

to pi. Hence, [a′′, 1] = [a′, 1] − [a′, a′′] has value of at least
n−|Q′|

n
− 1

n
= n−|Q′′|

n
.

If follows that 〈loop−invariant′′〉 is true and that the loop invariant has been maintained.

(f) Define Exit Condition: When every player has a piece we exit.

(g) Obtaining the postcondition 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
By the exit condition |Q| = n. By the loop invariant, the beginning [0, a] of the cake has
been partitioned into |Q| = n disjoint pieces and each player pi ∈ Q = P has been allocated
a piece [ai, bi] worth at least 1

n
to him. Though there may be some cake left over, the post

condition is satisfied.

(h) Measure of Progress: The measure of progress is number of pieces allocated. Each iteration
one piece is allocated. Initially, there are only n pieces to be allocated. Hence, with sufficient
progress, the exit condition will be met. The ith of the n iterations takes O(n−i) time for a
total running time of O(n2).

5. (Answer in slides)
Sorted Matrix Search: Search a Sorted Matrix Problem: The input consists of a real number x and
a matrix A[1..n, 1..m] of nm real numbers such that each row A[i, 1..m] is sorted from left to right and
each column A[1..n, j] is sorted from top to bottom. The goal is to determine if the key x appears in
the matrix. Design and analyze an iterative algorithm for this problem that examines as few matrix
entries as possible. Careful, if you believe that a simple binary search solves the problem. Later we
will ask for a lower bound and for a recursive algorithm.

• Answer: Doing binary search in O(log(n×m)) time is impossible. See the lower bound question.
If you take O(n logm) time doing binary search in each row than you are taking too much time.
It can be done by examining n +m − 1 entries. Observe that the values in the matrix increase
from A[1, 1] to A[n,m]. Hence, the boundary between values that are less than or equal to x and
those that are greater follows some monotonic path from A[1,m] to A[n, 1]. The algorithm traces
this path starting at A[1,m]. When it is at the point A[i, j], the loop invariant is that we have
stored the best answer from those outside of the sub-rectangle A[i..n, 1..j]. Initially, this is true
for [i, j] = [1,m], because none of the matrix is excluded. Now suppose it is true for an arbitrary
[i, j]. The algorithm then compares A[i, j] with x. If it is better than our current best answer
then our current best is replaced. If A[i, j] ≤ x, then because the values in the row A[i, 1..j] are
all smaller or equal to A[i, j], these are worse answers and hence we can conclude that we now
have the best answer from those outside of the sub-rectangle A[i + 1..n, 1..j]. We maintain the
loop invariant by increasing i by one. On the other hand, if A[i, j] > x, then it is too big and so
are all the elements in the column A[i..n, j] which are even bigger. We can conclude that we have
the best answer from those outside of the sub-rectangle A[i..n, 1..j − 1]. We maintain the loop
invariant by decreasing j by one. The exit condition is |i..n| = 0 or |1..j| = 0 (i.e. i > n or j < 1.
When this occurs, the sub-rectangle A[i..n, 1..j] is empty. Hence, our best answer, which by the
loop invariant is the best from those outside of the this sub-rectangle, must be the best overall.
The measure of progress |i..n|+ |1..j|− 1 = (n− i+1)+ (j)− 1 is initially n+m− 1 and decrease

6

by one each iteration. After n+m− 1 iterations, either the algorithm has already halted or the
measure has reached zero at which point the exit condition is definitely met.

6. (Answer in videos)
Connected Components: The input is a matrix I of pixels. Each pixel is either black or white.
A pixel is considered to be connected to the four pixels left, right, up, and down from it, but not
diagonal to it. The algorithm must allocated a unique name to each connected black component. (The
name could simply be 1,2,3,. . ., to the number of components.) The output consists of another matrix
Names where Names(x, y) = 0 if the pixel I(x, y) is white and Names(x, y) = i if the pixel I(x, y) is
a part of the component named i. The algorithm reads the matrix from a tape row by row as follows.

loop y = 1 . . . h
loop x = 1 . . . w

〈loop−invariant〉: ??

if(I(x, y)=white)
Names(x, y) = 0

else
???

end if
end loop

end loop
end algorithm

The image may contain spirals and funny shapes. Connected components may contain holes that
contain other connected components. A particularly interesting case is the image of a comb consisting
of many teeth held together at the bottom by a handle. Scanning the image row by row, one would
would first see each tooth as a separate component. As the handle is read, these teeth would merge
into one.

(a) Give the classic more of the input loop invariant algorithm. Don’t worry about its running time.

• Answer: Assuming that the input image consists only of the part of the image read in so far,
the algorithm has named the connected components. This loop invariant is maintained while
making progress as follows. The next pixel I(x, y) is read. The white case is easy, so suppose
it is black. This pixel is connected to two pixels that have been read before: I(x−1, y) to
its left and I(x, y−1) above it. If these are both white, then I(x, y) is in a new component
by itself and hence is given the new name never used before. If only one of I(x−1, y) and
I(x, y−1) is black or the two are black but in the same component, then I(x, y) become
a part of this component. Finally, if I(x−1, y) and I(x, y−1) are both black and in the
two different components, then the new pixel I(x, y) joins these two components into one.
Suppose I(x−1, y) has been named i and I(x, y−1) named i′. Every pixel in the component
named i′ is renamed to i.

maxName = numberOfComponents = 0
loop y = 1 . . . h

loop x = 1 . . . w
〈loop−invariant〉: More of the input.

if(I(x, y)=white)
Names(x, y) = 0

else
if(Names(x, y−1) = 0 and Names(x−1, y) = 0)

+ +maxName
++ numberOfComponents
Names(x, y) = maxName

elseif(Names(x, y−1) = 0 or Names(x−1, y) = 0 or (Names(x, y−1) = Names(x−1,

7

Names(x, y) = the nonzero one of Names(x, y−1) and Names(x−1, y)
else

i = Names(x, y−1)
i′ = Names(x−1, y)
Names(x, y) = i
Replace every i′ in Names with i.
−− numberOfComponents

end if
end if

end loop
end loop

end algorithm

(b) This version of the question is easier in that the matrix Names need not be produced. The
output is simply the number of connected black components in the image. However, this version
of the question is harder in your computation is limited in the amount of memory it can use. For
example, you don’t remember pixels that you have read if you do not store them in this limited
memory and you don’t have nearly enough memory to store them all. The number of components
may be Θ(the pixels) so you cant store all of them either. How little memory can you get away
with?

• Answer: The amount of memory needed is Θ(w). The algorithm will be the same except
it only keeps the last two rows worth of Names. Note numberOfComponents has already
been added to the code to count the number of components.

(c) In this this final version, in addition to a small amount of fast memory, you have a small number
of tapes for storing data. Data access on tapes, however, is quite limited. A tape is in one of
three modes and cannot switch modes mid operation. In the first mode, the data on a tape
is read forwards one data item at a time in order. The second mode, is the same except it is
read backwards. In the third mode, the tape is written to. However, the command is simply
write(data) which appends this data to the end of the tape. Data on a tape cannot be changed.
All you can do is to erase the entire tape and start writing again from the beginning. An algorithm
must consist of a number of passes. The first pass reads the input from the input tape one pixel
at a time row by row in order. As it goes, the algorithm updates what is store in fast memory
and outputs data in order onto a small number output tapes. Successive passes can read what
was written during a previous pass and/or the input again. The last pass must write the required
output Names onto a tape. You want to use as little fast memory and as few passes as possible.
For each pass clearly state the loop invariant.

• Answer: The algorithm will have two passes, two intermediate tapes, and Θ(w) fast memory.
During the first pass, the algorithm will again be the same. As in the last algorithm, it only
keeps the last two rows worth of Names in the fast memory. As rows of Names is deleted
from fast memory it is written to a tape Namesfirsttry. The problem is that as components
named i′ are renamed to i, this updating will not occur on the tape. Hence, Namesfirsttry
may have many names associated with each component. To keep track of these repeated
names, every time the algorithm would like to rename i′ to i, the instruction 〈i′ ⇐ i〉 is
written to a second tape Instructions.
The loop invariant for this first pass states that what is in the fast memory is exactly the
same as it would be in the second algorithm’s memory and if all the instructions 〈i′ ⇐ i〉
in Instructions are followed, then what is currently in the tape Namesfirsttry would be
converted into what would be in the first algorithm’s Names. More over, the instruction
〈i′ ⇐ i〉 appears in the location of the tape Instructions corresponding to the last place in
Namesfirsttry that the name i′ appears. Hence, if one reads both tapes Namesfirsttry and
Instructions backwards, then one would always have the required set of instructions to do
the required conversion.
The second pass reads these two tapes backwards. Its loop invariant is that it has already
correctly converted the part of Namesfirsttry that is has seen and stored it backwards in the

8

final output tape Names. The loop invariant also states that fast memory contains the needed
instructions to convert the next pixel. The step is to read the next pixel from Namesfirsttry,
read any new instructions from Instructions, convert this next pixel using the current set of
instructions, and write the converted pixel into Names.
One concern might be that the number of instructions read may exceed the size of the fast
memory. However, as soon as a name i′ no longer appears in a row of Namesfirsttry, we know
that it will never appear again earlier in Namesfirsttry. Hence, at this point the instruction
〈i′ ⇐ i〉 can be deleted. This ensures, that the number of instructions in fast memory never
exceeds the number w of pixels in a row.

7. (Answer in videos)
A tournament is a directed graph (see Section ??) formed by taking the complete undirected graph
and assigning arbitrary directions on the edges, i.e., a graph G = (V,E) such that for each u, v ∈ V ,
exactly one of 〈u, v〉 or 〈v, u〉 is in E. A Hamiltonian path is a path through a graph that can start
and finish any where but must visit every node exactly once each. Design an algorithm which finds a
Hamiltonian path through it given any tournament. Because this algorithm finds a Hamiltonian path
for each tournament, this algorithm, in itself, acts as proof that every tournament has a Hamiltonian
path.

• Answer:

More of the Output: It is natural to want to push forward and find the required path through
a graph. The measure of progress would be the amount of the path output and the loop
invariant would say “I have the first i nodes (edges) in the final path.” Maintaining this
loop invariant would require extending the path constructed so far by one more node. The
problem, however, is that the algorithm might get stuck, when the path constructed so far
has no edges leaving the last node to a node that has not yet been visited. This makes the
loop invariant as stated false.

Recursive Backtracking: One is then tempted to have the algorithm “backtrack” when it gets
stuck trying in a different direction for the path to go. This is a fine algorithm. See recursive
backtracking algorithms in Chapter ??. However, unless one is really careful, such algorithms
tend to require exponential time.

More of the Input: Instead, try solving this problem using a “more of the input” loop invariant.
Assume the nodes are numbered 1 to n in an arbitrary way. The algorithm temporarily
pretends that the sub-graph on the first i of the nodes is the entire input instance. The
loop invariant is “I currently have a solution for this sub-instance.” Such a solution is a
Hamiltonian path u1, . . . , ui that visits each of the first i nodes exactly once each, which
in turn is simply a permutation the first i nodes. Maintaining this loop invariant requires
constructing a path for the first i + 1 nodes. There is no requirement that this new path
resembles the previous path. However, for this problem, it can be accomplished by finding a
place to insert the i + 1st node within the permutation of the first i nodes. In this way, the
algorithm looks a lot like insertion sort.

Case Analysis: When developing an algorithm, a good technique is to see for which input in-
stances the obvious thing works and then try to design another algorithm for the remaining
cases.

u
i

v
i+1

(c) 2
uu

1 i(a) 32
uuu

1
u

v

1
u u u

2 3 i
u

i+1

j+1j
uu

v
i+1

(b)

(a) If 〈vi+1, u1〉 is an edge, then the extended path is easily vi+1, u1, . . . , ui.

(b) Similarly, if 〈ui, vi+1〉 is an edge, then the extended path is easily u1, . . . , ui, vi+1.

9

(c) Otherwise, because the graph is a tournament, both 〈u1, vi+1〉 and 〈vi+1, ui〉 are edges.
Color each node uj red if 〈uj , vi+1〉 is an edge and blue if 〈vi+1, uj〉 is. Because u1 is
red and ui is blue, there must be some place uj to uj+1 in the path where path changes
color from red to blue. Because both 〈uj , vi+1〉 and 〈vi+1, uj+1〉 are edges, we can form the
extended path u1, . . . , uj , vi+1, uj+1, . . . , ui.

8. (Answer in videos)
An Euler tour in an undirected graph is a cycle that passes through each edge exactly once. A graph
contains an Eulerian cycle iff it is connected and the degree of each vertex is even. Given such a graph
find such a cycle.

• Answer:

More of the Output: We will again start by attempting to solve the problem using the more
the output technique, namely, start at any node and build the output path one edge at a
time. Not having any real insight into which edge should be taken next, we will choose them
in a blind or “greedy” way (see Chapter ??). The loop invariant is that after i steps you have
some path through i different edges from some node s to some node v.

Getting Stuck: The next step in designing this algorithm is to determine when, if ever, this
simple blind algorithm gets stuck and to either figure out how to avoid this situation or to
fix it.

Making Progress: If s 6= v, then the end node v must be adjacent to an odd number of edges
that are in the path. See Figure ??.a. This is because there is the last edge in the path and
then for every edge in the path coming into the node there is one leaving. Hence, because
v has even degree it follows that v is adjacent to at least one edge that is not in the path.
Follow this edge extending the path by one edge. This maintains the loop invariant while
making progress. This process can only get stuck when the path happens to cycle around
back to the starting node giving s = v. In such a case, join the path here to form a cycle.

s v
u = new s

b)a)
vs

Figure 1: Euler Algorithm

Ending: If the cycle created covers all of the edges, then we are done.

Getting Unstuck: If the cycle we have created from our chosen node s back to s does not cover
all the edges, then we look for a node u with in this cycle that is adjacent to an edge not
in the cycle. See Figure ??.b. Change s to be this new node u. We break the cycle at u
giving us a path from u back to u. The difference with this path is that we can extend it
past u along this unvisited edge. Again the loop invariant has been maintained while making
progress.

u Exists: The only thing remaining to prove is that when v comes around to meet s again and
we are not done, then there is in fact a node u in the path that is adjacent to an edge not
in the path. Because we are not done then there is an edge e in the graph that is not in
our path. Because the graph is connected, there must be a path in the graph from e to our
constructed path. The node u at which this connecting path meets our constructed path must
be as required because the last edge {u,w} in the connecting path is not in our constructed
path.

Extended Loop Invariant: To avoid having to find such a node u when it is needed, we extend
the loop invariant to state that in addition to the path, the algorithm remembers some node
u other than s and v that is in the path and is adjacent to an edge not in the path.J: Ex-

cept

for this

little

imple-

men-

tation

detail,

10

In Lectures

9. Pointers (Answer in slides)
“And the last shall be first!”
(For each of A-K see the figure on the next page labeled with the corresponding letter. Here n = 6.)

A: Precondition; The input to this problem is a linked list of n nodes in which the last node points
back to the first forming a circle. The variable last points at the “last” node in the list. The
nodes are of type Node containing a field info and a field next of type Node which is to point at
the next node in the list. The values 1, 2, . . . , 6 in figure are just to help you and cannot be used
in the code.

B: Postcondition; The required output to this problem consists of the same nodes in the same circle,
except each node now points at the “previous” node instead of the “next”. In other words the
pointers are turned from clockwise to counter clockwise. The variable last still points at the same
node, but this “last” node has become “first”.

C: Loop Invariantt; Your algorithm for this problem will be iterative (i.e. a loop taking one step at
a time). Your first task is to give the loop invariant. This is not done in words but by drawing
what the data structure will look like after the algorithm has executed it’s loop t = 2 times. Hint:
Nodes with value 1 and 2 have their pointers fixed. Hint: You may need a couple of additional
pointers to hold things in place. Give them as meaningful names as possible.

D: Loop Invariantt+1; The next task in developing an iterative algorithm is:

- Maintain the Loop Invariant:
We arrived at the top of the loop knowing only that the Loop Invariant is true and the
Exit Condition is not.
We must take one step (iteration) (making some kind of progress).
And then prove that the Loop Invariant will be true when we arrive back at the top of
the loop.
〈loop−invariantt〉 & not 〈exit−cond〉 & codeloop ⇒ 〈loop−invariantt+1〉

Towards this task, draw what the data structure will look like after the algorithm has executed
it’s loop one more time, i.e. t+1 = 3 times.

E: Code C to D; In space E, give me the code to change the data structure in figure C into that in
figure D. This will be the code within the loop that makes progress while maintaining the loop
invariant. Assume every variable and field is public.

F: Loop Invariant0; The next task in developing an iterative algorithm is:

- Establish the Loop Invariant:
Our computation has just begun and all we know is that we have an input instance that
meets the Pre Condition.
Being lazy, we want to do the minimum amount of work.
And to prove that it follows that the Loop Invariant is then true.
〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉

Towards this task, draw what the data structure will look like when the algorithm is at the
top of the loop but has has executed this loop zero times. Make it as similar as possible to the
precondition so that minimal work needs to be done in G.

G: Code A to F; In space G, give me the code to change the data structure in figure A into that in
figure F. This will be the initial code that establishes the loop invariant.

H: Loop Invariantn; The next task in developing an iterative algorithm is:

11

- Obtain the Post Condition:
We know the Loop Invariant is true because we have maintained it.
We know the Exit Condition is true because we exited.
We do a little extra work.
And then prove that it follows that the Post Condition is true.
〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒ 〈post−cond〉

Towards this task, draw what the data structure will look like after the algorithm has executed
it’s loop n times. Make it as similar as possible to the postcondition so that minimal work needs
to be done in J.

I: Exit Condition: What is the exit condition, i.e. how does your code recognize that it is in the
state you drew in H, given that the algorithm does not know n (and did not count t) and does
not know the values 1, 2, . . . , 6. Also be careful that your exit condition does not have you drop
out at state D.

J: Code H to B; In space J, give me the code to change the data structure in figure H into that in
figure B. This will be the final code that establishes the post condition.

K: Give the complete code; Put all the code together into a routine solving the problem.

Node done = last;
Node todo = last.next;

5

4

3

2

1

6

Node temp = todo.next;
todo.next = done;
done = todo;
todo = temp;6

15

2

3

4

tC: Loop Invariant

done

6

15

2

3

4

todo = temp;
done = todo;
todo.next = done;
Node temp = todo.next;

Node todo = last.next;
Node done = last;

void ReverseCycle(Node last) {

while(todo.next!=last) {

}

}

K: Give the complete code

6

1

2

3

4

5

0F: Loop Invariant

D: Loop Invariant t+1

4

3

2

5 1

6

done

4

3

2

5 1

6

4

but does not differentiate from F

last

G: Code A to FA: Precondition

last

E: Code C to D

todo

if(todo.next==last) exit;

"done==last" is good

todo

last
done

I: Exit ConditionnH: Loop Invariant

J: Code H to B
Nothing to do
except return
which will deallocate the memory
for done and todo

done
last

todo

todo

todo

last

B: Post Condition

temp

10. (Answer in slides)
Lake Problem:
You are in the middle of a lake of radius one. You can swim at a speed of one and can run infinitely
fast. There is a smart monster on the shore who can’t go in the water but can run at a speed of four.
Your goal is to swim to shore arriving at a spot where the monster is not and then run away. If you

12

swim directly to shore, it will take you 1 time unit. In this time, the monster will run the distance
Π < 4 around to where you land and eat you. Your better strategy is to maintain the most obvious
loop invariant while increasing the most obvious measure of progress for as long as possible and then
swim for it. Describe how this works.

• Answer: I am going to complete the iterative algorithm steps in the order in which I thought of
them. The disadvantage of this order is that steps that depend on later steps are not completely
complete. But hopefully if you read the solution a second time you will see that each of these
steps can be completed fitting them nicely together.

– Define Loop Invariant:
The loop invariant that you would like to maintain is that you are diametrically opposed to
the monster, i.e. the line between him and you goes through the center.
I would say this is a Fairy Godmother type of loop invariant. I have arrived from Mars, some
amount of progress has been made already and my Fairy God Mother has set the state of the
computation to be just what I want so that I feel comfortable. OK, maybe I would feel more
comfortable if I was safely in my bed but this as comfortable as I could be given the amount
of progress that has been made.

– Establishing the Loop Invariant 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉:
Initially, the loop invariant is trivially true because you are at the center.

– Maintaining the Loop Invariant 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉:
Your initial goal is simply to maintain the loop invariant as long as you can. You keep an
eye on the monster. If he runs clockwise on shore, then you swim counter clockwise that the
rate necessary to maintain that you are diametrically opposed to the monster. If he suddenly
switches to running counter clockwise, then you switch your direction too. If you are currently
near the shore, then you will have to swim almost as fast as he runs to accomplish this. The
problem is that he runs four times faster than you can swim. On the other hand, if you are
at the center, then you only need to tread water to accomplish this initial goal. The dividing
line between these two extremes is when your current location is at radius r ≤ 1

4
from the

center. In such a case, you are able to swim around your circle of radius r at least as fast as
he can run around the lake, even though he swims four times faster because your circle has at
most 1

4
the circumference of his. Hence, as long as r ≤ 1

4
, you have no problem maintaining

the loop invariant.

– Making Progress:
Your measure progress is your distance r from the center. Your movements for maintaining
the loop invariant move you parallel to the shore and hence do not make you any progress
according to this measure. However, if r is strictly less than 1

4
, then you do not need all

of your speed to maintain the loop invariant. Use your extra speed to make progress by
swimming outward.

– Define the Step. As said, some of your swimming effort is swimming in the circle perpendicular
to the shore in order to keep the center of the lake between you an the monster and your
remaining effort is making progress swimming towards the nearest shore. Instead of swimming
in a stair case alternating between these two goals you can use linear algebra to combine these
two vectors into one vector that moves you in a smooth spiral way from the center. Of course
the direction of your spiral may keep changing as the monster gets frustrated and changes his
direction.

– Define Exit Condition: As said in the iterative algorithm steps, one possible reason for exiting
the loop is that you are no longer able to maintain the loop invariant. In this case, we fail to
make progress when r ≥ 1

4
circle. Hence, we make this our exit condition.

– Ensuring that we actually Exit:
The official rules of loop invariant algorithms is that you must make progress of at least one
each time step because steps of size 1

2
, 1

4
, 1

8
. . . will get you close but never quite there.

13

Years ago I checked the converging issue and my memory is if you swimming in a stair case
alternating between swimming perpendicularly and towards shore, then the amount you have
left to swim towards shore is not enough to get you to ever reach r = 1

4
in a finite amount

of time, i.e. you will get closer can closer but never quite reach it. However, if you use linear
algebra to combine these two vectors into one vector that spirals, then you do in fact converge
to r = 1

4
in a finite time. Check this if you like.

To avoid the converging issue, lets set some small number ǫ and exit when our distance from
the center is r ≥ 1

4
− ǫ. We know that we will eventually meet this exit condition because

as long as r < 1

4
− ǫ, in each “time unit” we are guaranteed to make some constant amount

O(ǫ) amount of progress.

– Obtaining the postcondition 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
By the exit condition r ≥ 1

4
− ǫ. By the loop invariant, the monster is on the opposite shore

from your current location. The post loop code is for you to swim as fast as you can directly
for shore. This take you 1−r ≈ 3

4
time units. During this time the monster can run a distance

of 3. However, because he is diametrically opposed to you when you start your sprint, he
needs to run a distance of Π > 3, which is too far for him. You then run to safety meeting
the post condition!

In contrast, here is a wrong answer.

– 1) Basic steps: Swim in the opposite direction of monster’s current location.

– 2) Loop invariant: You’ve been swimming to the shore while your head is in the opposite
direction of monster’s current location.

* Being a picky marker, I will complain that this sounds more like a description of the
algorithm than like a picture of the current state of the computation. I hope this wrong
answer help to demonstrate the danger of this. Though this loop invariant does tell you what
you have been doing, it does not tell you what you need to know, which is where you currently

are wrt the monster.

– 3) Main steps: Look around and check monster’s location while you keep swimming and
change the direction if it’s needed to keep your direction opposite to monster’s location.

* (Fancy talk for “Panic and swim away from the monster.” Certainly this is the most
natural thing for a frightened person to do. And I am not trying to prove here that this
algorithm does not work (it may). I am trying to prove that this proof that this algorithm
works is a faulty proof.

– 4) Measure of progress: distance to the shore is the measure of progress.
* For sure, this is the right measure of progress.

– 5) Make progress: It makes progress because where ever monster is at shore, if you keep
swimming to the shore at the opposite direction of monster’s location. You get closer to the
shore, which mean the distance to the shore is reduced.
* But what if he is on the shore you are closest too. Then your algorithm swims you away

from shore and you fail to make progress - in fact, just the opposite. You could well swim in
circles for ever.

– 6) Maintain loop variant: You have been swimming in the opposite direction of monster’s
location from the previous loop. Loop invariant is maintained by checking the monster’s
location and keeping your head in the opposite direction of monster’s location while you’re
swimming.

* True, you do manage to keep doing this same algorithm and hence because your loop
invariant only states that you keep doing this same algorithm, you do in fact maintain the
loop invariant (for what ever that is worth).

– 7) Establishing loop invariant: You obtain loop invariant by checking the monster’s direction
and starting to swim to the opposite direction of monster’s location.

* Certainly a good start.

14

– 8) Exit condition: distance to the shore is zero.
* The problem is that this exit condition might never be met.

– 9) Ending: By the exit condition, you are at the shore and by the loop invariant your head
is is pointed in the opposite direction of monster’s location. The post condition follows.
* Your head my well be pointed in the opposite direction of monster’s location, but because

your loop invariant says nothing about where the monster is wrt your current location, he
may well be standing right beside you. On the other hand, it may be a good thing that your
head is facing in the opposite direction because then you might aware of moment that he eats
you.

11. Iterative 3 In A Row In An Infinite Line:
The game board consists of a single line of squares that is infinitely long in both directions. Each
iteration your opponent places a white piece and then you place a black piece. If a player gets three
in a row he wins. Your primary goal is to stop him from doing this. If the game goes on forever then
this is considered a tie.

Your game strategy will be to maintain the following loop invariants
After we each have played the same number of times the following are true.

(a) Every contiguous block of whites has a black on its left end.

(b) Every contiguous block of whites of length two or more also has a black on its right end.

(c) There are no contiguous blocks of white of length three or more.

(i.e. A block consisting of one white has a black to its left, a block with two whites has a black on both
ends, and there are no blocks of length three or more.)

The exit condition will be that someone has won.
The post condition will be that you win.

Your task is to follow all the loop invariant steps outlined in the steps and then to prove that either
the game goes on forever as a tie or you win.

Suppose your opponent has just placed a white. There are nine cases depending on whether there is
a black, white, or blank on the left of this newly placed white and whether there is a black, white, or
blank on the right. To help you, I group these nine into the five cases indicated in the following five
lines. Then I group these further into three cases indicated by the black dots. In each of these five
cases, state where you will place your black in response and in each of these three cases, prove that
this maintains each of the three loop invariants.

• There is a blank to the left of where he placed his white.
There is a black to the left.

• There is a white to the left and a blank to the right.
There is a white to the left and a black to the right.

• There is a white to the left and a white to the right.

Is it possible to have an algorithm that guarantees you win even if you go first?

• Answer:

Establishing the Loop Invariant: 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉
The precondition gives that the board is empty. A very important but silly fact is if there are
no elephants in the room, then the statement “Every elephant in the room is pink” is a true
statement. Similarly, if there are no contiguous block of whites, then L1=”Every contiguous
block of whites has a black on its left end.” is trivially true. Similarly L2. L3, which state
that there are no contiguous blocks of white of length three or more, is clearly true when the
board is empty.

15

Responding Move and Maintaining the Loop Invariant: 〈loop−invariant′〉 &
not 〈exit−cond〉 & codeloop ⇒ 〈loop−invariant′′〉.
When he places a white, I move as follows.

– If there is a blank to the left I go there.
If there is a black to the left I go somewhere else trying to win.

∗ We made sure that this block of whites has a black on its left end. Hence, we maintained
LI1.

∗ Because there is not a white to the left of where he went, he did not extend a white
block further to the right. Neither did he extend a white block further to the left
because LI1 ensures that at the beginning of his turn every white block has a black on
its left end. Hence his white does not make a white block longer and hence maintains
LI2 and LI3.

– If there is a white to the left and a blank to the right I go in the blank.
If there is a white to the left and a black to the right I go somewhere else trying to win.

∗ By LI1 this block of whites already has a black on the left end so LI1 is maintained.

∗ We made sure that this block of whites has a black on its right end. Hence, we main-
tained LI2.

∗ The opponent could not have made a block of two (or more) whites longer because by
LI2 such a block would have had a black on both ends. Hence, LI3 is maintained.

– It is imposable that there is a white to the left and a white to the right.

∗ LI1 ensures that at the beginning of the opponents turn, there is never a blank to the
left of a white. Hence, there could not have been such a blank space for him to go into.

Obtaining the Postcondition: 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
By the loop invariant L3, we know that the opponent has not won.
By the exit condition, someone has won.
Hence it must be us.

Either the game go on forever as a tie or you win We don’t have a measure of progress,
because the game is likely to go on forever as a tie. But we did prove that if the game does
exit, you win.

Going First: This same thing proves that there is no algorithm that guarantees you win even if
you go first.

Unfair Advantage: Now suppose you are white, i.e. trying to grow the long block. Suppose
that you get 100 times as many turns. You could then build a contiguous block of length
200, i.e. you put a 100, he caps one end by placing a black there, you place a second 100 on
the other end, and he caps that end with a black. If you did manage to build a really long
block, it would take you a while. Then in just two moves he can destroy it by capping both
ends. A fun question is to what is the longest contiguous block of whites that you can build?
To make the algorithm easier, lets assume that the opponent is not trying to build a block
of blacks. His only goal is to prevent you from building a long contiguous block of white by
capping the ends of any block you are working on with a black.

12. (24 Marks) Iterative n In A Row In An Infinite Line:
The game board is an infinitely long line of squares. In a normal round, you will place a white and
then your opponent a black. The goal is to build long contiguous blocks of your colour. We proved
in test 1 that there is no algorithm that allows you to build a block longer than two. We will now
develop an algorithm that builds arbitrarily long contiguous white blocks. To help, you will be given
the advantage that every ten round you get to place a white but your opponent must skip his turn.
(The regular expression is ((WB)9W)∗.)

It seemed at first to me that even if you got 100 times as many turns, that you could not build a
contiguous block longer than 200, i.e. you put a 100, he caps one end by placing a black there, you

16

place a second 100 on the other end, and he caps that end with a black. If you did manage to build a
really long block, it would take you a while. Then in just two moves he can destroy it by capping both
ends. Surprisingly, you can build arbitrarily long lines. (Funny though you can’t just build a block
that gets longer and longer arbitrarily. You must have the length you want to build in mind when you
start.)

To make the algorithm easier, lets assume that the opponent is not trying to build a block of blacks.
His only goal is to prevent you from building a long contiguous block of white by capping the ends
of any block you are working on with a black. All blocks that we start will be far enough away from
each other that they will never grow long enough to interact with each other. We will be cautious. If
the opponent caps one of the ends of one of our blocks or even puts a black anywhere near that block,
then we will not wait for him to cap the second end but will abandon that block completely. Hence,
all we are concerned about is how many blocks we have that have no blacks near them and how long
are these blocks are. The adversary each of his turns, being as greedy as he can be, will simply cap
the first end of our currently longest such block. Given this, we will keep our blocks as close to being
the same size as possible.

Input: The input to this problem is an integer n (say a billion).

Precondition: The board is empty.

Postcondition: You have produced a continuous block of whites of length n.

Iterations: This will be an iterative algorithm. You will have “iterations” for i = 0, 1, . . . , n. Each
such iteration will contain as many rounds of turns as you need to make progress and maintain
the loop invariant.

Loop Invariant: After i “iterations”, you have constructed many special blocks.

Length: Each such special block consists of i whites in a row.

Isolation: Each is far away from any black and from each other.

Number: The number of such special blocks in 10n−i.

In addition to these special blocks the board will contain many white blocks that are abandoned
because they have a black on one end.

• Complete Jeff’s steps in completing the description/proof of this algorithm.

• Also compute the total number N of whites that you place.

• Answer:

Establishing the Loop Invariant: 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉
The precondition gives that the board is empty and perhaps the value n. To establish the
loop invariant for i = 0, we must produce 10n blocks of whites of length zero far away from
each other and far away from any black. This requires placing N0 = 0 whites. It only requires
deciding where the blocks will be.

Maintaining the Loop Invariant: 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉.
Suppose the LI is true for i−1 “iterations”, i.e. the board contains 10n−i+1 blocks of whites
each of length i−1 far away from each other and far away from any black. Our goal is to make
these blocks one longer. For each of our next 10n−i+1 turns, we simply place a white next to
one of the blocks of these length i−1 making it a block of length i. Our opponent gets nine
moves for each of our ten. Hence, during these 10n−i+1 turns of ours he gets 0.9 × 10n−i+1

turns. During each of these moves he can, if he wants, “destroy” one of our blocks of length i
by placing a black near it. But whatever he does, he cannot destroy more than 0.9× 10n−i+1

of them. As required by the loop invariant, this leaves 10n−i+1−0.9×10n−i+1 = 10n−i blocks
of length i. During this ith iteration we placed Ni = 10n−i+1 white stones.

Obtaining the Postcondition: 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
The exit condition is that i = n. By the loop invariant there is 10n−n = 1 contiguous white
block of length n.

17

Measure of Progress: Clearly the measure of progress is the value i, it increases each iteration
and after n such iteration the exit condition is obtained.

Running Time N : The total number of whites that you place is N =
∑n

i=1
Ni =

∑n

i=1
10n−i+1 ≤ 2 · 10n.

13. (Answer in slides)
Multiplying: The ancient Egyptians and the Ethiopians had advanced mathematics. Merely by
halving and doubling, they could multiply any two numbers correctly. Say they want to buy 15 sheep
at 13 Ethiopian dollars each. Here is how he figures out the product. Put 13 in a left column, 15 on
the right. Halve the left value; you get 6 1

2
. Ignore the 1

2
. Double the right value. Repeat this (keeping

all intermediate values) until the left value is 1. What you have is
13 15

6 30

3 60

1 120

Even numbers in the left column are evil and, according the story, must be destroyed, along with
their guilty partners. So scratch out the 6 and its partner 30. Now add the right column giving
15 + 60 + 120 = 195, which is the correct answer. Give all the required steps to describe this LI
algorithm. The question sheet has some hints.

• Answer:

Specification: An input instance consists of two positive integers x and y. The output is their
product.

* Define Loop Invariant: The loop invariant is ℓ× r+ s = x× y. It is similar to the Shrinking
Instance invariant.

* Establishing the Loop Invariant: 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉:

– 〈pre−cond〉 assures us that we have two integers x and y.

– The code before the loop sets ℓ = x, r = y, and s = 0.

– This trivially establishes the loop invariant by giving ℓ× r + s = x× y + 0.

Picture: Draw an ℓ by r rectangle and an area of s on the side. The first step consists of removing
one row (with area 1 × r) from the rectangle and moving that area to the side. The second
step consists of cutting the rectangle in half top to bottom and moving the top half to the
right side of the bottom half. Both of these steps keep the total area the same.

Step: Define the Step (actually all the code):

algorithm EthiopianMultipling (x, y)

〈pre−cond〉: x and y are positive integers.

〈post−cond〉: Outputs x× y.

begin
ℓ = x, r = y, s = 0
loop

〈loop−invariant〉: ℓ× r + s = x× y.

exit when ℓ = 0
if(ℓ is odd) then

ℓ = ℓ− 1
s = s+ r

end if

〈loop−invariant〉: ℓ× r + s = x× y.

ℓ = ℓ/2
r = 2× r

end loop
return(s)

end algorithm

18

Maintaining the Loop Invariant 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉:
Let ℓ′, r′, s′ be the values when at the top of the loop and assume that ℓ′ × r′ + s′ = x× y.
In the first step, if ℓ′ is odd then ℓ′′ = ℓ′ − 1 and s′′ = s′ + r′. This gives that ℓ′′ × r′′ + s′′ =
(ℓ′ − 1)× r′ + (s′ + r′) = ℓ′ × r′ + s′, which by the loop invariant is x× y.
In the second step, ℓ′′′ = ℓ′′/2 and r′′′ = 2r′′. This gives that ℓ′′′×r′′′+s′′′ = (ℓ′′/2)× (2r′′)+
s′′ = ℓ′′ × r′′ + s′′, which by the loop invariant is x× y.

Exit: The Ethiopians exit when ℓ = 1. But this being odd, they must add r to s. We will iterate
one more time and exit when ℓ = 0.

* Ending: Obtaining the postcondition 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
The loop invariant gives ℓ× r+ s = x× y and the exit condition gives that ℓ = 0. This gives
s = x× y. The code returns s.

Termination: The measure of progress can be the value of ℓ or even more elegantly log2 ℓ.
Progress is made each iteration because the value of ℓ is cut in half and hence log2 ℓ goes
down by one. Initially, log2 ℓ is initially finite. With sufficient progress, ℓ will be one or zero
and the exit condition will be met.

Time Complexity: The “size” of the input is n = log2 x + log2 y, which is the number of bits
to write down x and y. The algorithm iterates log2(x) = n times. No value increases beyond
x × y = 2n × 2n = 22n and hence is at most a 2n bit number, giving that all additions take
Θ(n) bit operations. Hence, the total algorithm uses at most Θ(n2) bit operations, which is
quadratic in the size 2n of the input. This time equivalent to that needed for the high school
algorithm for multiplying.
If pebbles are used then eventually the answer x × y is counted out in pebbles. This alone
requires Ω(x× y) = Ω(22n) pebble operations. This is exponential in the input size 2n. But
if the input is given to us in pebbles, it might be more fair to call the “size” the number of
pebbles, which is x+y. In which, case the time x×y is also quadratic in the input size. Note
this is equivalent in time to lay out a rectangle of x by y pebbles.

A Comparison: Though this algorithm seems strange, it is in fact exactly the same as the high
school algorithm for multiplying in binary. Lets us first understand multiplication x × y in
terms of bits. Let x4x3x2x1x0 denote the bits of x written in binary. For example x = 58 =
110012. The bit xi is shifted into place by multiplying it by 2i. This gives x =

∑

i 2
ixi.

Plugging this in gives that x× y =
[
∑

i 2
ixi

]

× y =
∑

i

[

2ixiy
]

.

0
2 a Y0

100100010
111010

111010

Y
X

000000

101
111010

1
2 a Y12
2 a Y2

Now lets see how the high school algorithm for multiplying in binary implements this. First
the bits of y are written on the top line and the bits of x, namely x4x3x2x1x0, are written
below it. On the ith line below this, we multiply xi by y and shift this over i spots. This gives
2iyxi on this ith line. The algorithm then adds these lines up giving the answer

∑

i 2
iyxi as

required.
Now lets consider our algorithm. Lets first see how it determines the bits of x. The variable ℓ
starts at x and comes down by a factor of two rounded down each iteration and hence after i
iterations is ℓi = ⌊ x

2i
⌋. Similarly ri = 2iy. An iteration adds in ri to s iff ℓi is odd. ℓi = ⌊ x

2i
⌋

is odd iff the ith bit of x is xi = 1. For example, x = 13 in binary is x = 11012. Here, x0 = 1
because ℓ0 = x = 13 is odd and x1 = 0 because ℓ1 = ⌊x

2
⌋ = 6 is even. Hence, the bit xi

indicates whether or not ri is added to s. Hence, our answer, which is the final value of s, is
∑

i rixi =
∑

i 2
iyxi as required.

14. (Answer in slides)

19

Multiplying using Adding: My son and I wrote a JAVA compiler for his grade 10 project. We
needed the following. Suppose you want to multiply X × Y two n bit positive integers X and Y . The
challenge is that the only operations you have are adding, subtracting, and tests like ≤. The standard
high school algorithm seems to require looking at the bits of X and Y and hence can’t obviously be
implemented here. The Ethiopian algorithm requires dividing by two, so can’t be implemented either.
A few years after developing this algorithm, I noticed that it is in fact identical to this high school
multiplication algorithm, but I don’t want to tell you this because I don’t want you thinking about the
algorithm as a whole. This will only frighten you. All you need to do is to take it one step at a time. I
want only want you to establish and maintain the loop invariant and use it to get the post condition.
(The flavor is very similar to what was done in the Ethiopian problem on the practice test.) To help,
I will give you the loop invariants, the measure of progress, and the exit condition. I also want you
to explain what the time complexity of this algorithm is, i.e. the number of iterations and the total
number of bit operations as a function of the size of the input.

We have values i, x, a, u[], and v[] such that

Useful Arrays: Before the main loop, I will set up two arrays for you with the following values. Then
they will not be changed.

LI0’: u[j] = 2j , (for all j until u[j] > X)

LI0”: v[j] = u[j]× Y . Note v[j]− u[j]× Y = 0

My Code: For completion, I include my code, but it is not necessary for you to understand it.

u[0] = 1
v[0] = Y

j = 0
while(u[j] ≤ X)

u[j + 1] = u[j] + u[j]
v[j + 1] = v[j] + v[j]
j = j + 1

end while

For Main Loop: These are the loop invariants for you to deal with.

LI0: Neither X nor Y change.

LI1: X × Y = x× Y + a (i.e. Shrinking Instance)

LI2: x ≥ 0

LI3: x < 2i = u[i] (below are two cases)

2
i−1

u[i]u[i−1]u[i]u[i−1]

ix0 2
x ii−1

Case 2Case 1

220

Measure of progress: i. It decreases by 1 each iteration.

Exit Condition: i = 0

Use the steps laid out in class to complete the description of the algorithm.

• Answer:

Establishing the Loop Invariant 〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉:
codepre−loop :

i = j
x = X
a = 0

LI1: x× Y + a = X × Y + 0 = X × Y .

LI2: x = X ≥ 0 by pre-condition

LI3: x = X < u[j] = u[i] by exit condition of while loop that constructs u[j].

20

Steps:

loop
〈loop−invariant〉
exit when i = 0
i = i− 1;
if(u[i] ≤ x)

x = x− u[i]
a = a+ v[i]

end if
end loop

Maintaining the Loop Invariant 〈loop−invariant′〉 & not 〈exit−cond〉 & codeloop ⇒
〈loop−invariant′′〉:
Let x′ be the value of x when we are at the top of the loop and let x′′ be that after going
around the loop one more time. (Same for i and a)
There are two cases:

if(u[i′′] ≤ x′): The code in the step gives i′′ = i′ − 1, x′′ = x′ − u[i′′], and a′′ = a′ + v[i′′].

Maintain LI1: x′′×Y +a′′ = (x′−u[i′′])×Y +(a′+v[i′′]) = x′×Y −u[i′′]×Y +a′+v[i′′] =
(x′ × Y + a′) + (v[i′′]− u[i′′]× Y) = (X ′ × Y by LI1) + (0 by LI0”) = X × Y .

Maintain LI2: By the if statement u[i′′] ≤ x′ and hence x′′ = x′ − u[i′′] ≥ 0.

Maintain LI3: x′′ = x′ − u[i′′] = x′ − 2i
′−1 < 2i

′

− 2i
′−1 (by LI3) = 2i

′−1 = 2i
′′

= u[i′′].

else The code in the step gives i′′ = i′ − 1, x′′ = x′, and a′′ = a′

Maintain LI1&2: Trivial

Maintain LI3: By the else of the if statement, u[i′′] > x′.

Obtaining the postcondition 〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒
〈post−cond〉:
By exit condition, i = 0.
By LI2&3, 0 ≤ x < u[i] = 1, and hence x = 0.
By LI1, X × Y = x× Y + a = 0× Y + a = a.
If follows that the postcondition is met simply by outputting a.

Time Complexity: The “size” of the input is n = log2 X + log2 Y , which is the number of bits
to write down X and Y . The number of iterations is the initial value of i, which is set so
that X = x < u[i] = 2i, giving i = ⌈log2 X⌉ ≤ O(n). Each iteration requires add/subtract
operations which take O(n) bit operations. Hence this algorithm will require O(n2) bit
operations.

A Comparison: Though this algorithm seems strange, it is in fact exactly the same as the high
school algorithm for multiplying in binary (and hence the same as the Ethiopian algorithm).
Lets us first understand multiplication X × Y in terms of bits. Let X4X3X2X1X0 denote
the bits of X written in binary. For example X = 58 = 110012. The bit Xi is shifted
into place by multiplying it by 2i. This gives X =

∑

i 2
iXi. Plugging this in gives that

X × Y =
[
∑

i 2
iXi

]

× Y =
∑

i

[

2iXiY
]

.

0
2 a Y0

100100010
111010

111010

Y
X

000000

101
111010

1
2 a Y12
2 a Y2

Now lets see how the high school algorithm for multiplying in binary implements this. First
the bits of y are written on the top line and the bits of X, namely X4X3X2X1X0, are written
below it. On the ith line below this, we multiply Xi by Y and shift this over i spots. This gives
2iY Xi on this ith line. The algorithm then adds these lines up giving the answer

∑

i 2
iY Xi

as required.

21

Now lets consider our algorithm. Lets first see how it determines the bits of X. Let xi denote
the value of x in the iteration in which i is i. Our first value of i is the number of bits in X,
here 5, because it is the smallest for which X = x < u[i] = 2i = 1000002. A loop invariant
that we will maintain is that xi will always be the integer formed from the right most i bits
Xi−1 . . . X2X1X0 of X = 110012, namely x5 = 110012, x4 = 10012, x3 = 0012, x2 = 012,
x1 = 12, and x0 = 02. We establish this loop invariant by setting x5 = xi = X. We set
u[i−1] = 100002 so when written in binary it is zero everywhere except a 1 in the location of
the bit Xi−1. The iteration tests whether u[i−1] ≤ xi which tells us whether or not Xi−1 = 1.
For example, we know that X4 = 1 because u[4] = 10000 ≤ 110012 = x4 we know that
X2 = 0 because u[2] = 100 > 0012 = x3. We maintain this loop invariant about xi being
the right i bits of X by removing its left most bit using xi−1 = xi − u[i−1]. For example,
x4 = x5 − u[4] = 110012 − 100002 = 10012 and x2 = x3 = 0012 = 012. Each iteration also
adds v[i−1] into a iff u[i−1] ≤ xi and hence iff Xi−1 = 1. Hence, our answer, which is the
final value of a, is

∑

i v[i]Xi =
∑

i 2
iY Xi as required.

22

