
CSE 3101 Design and Analysis of Algorithms

Practice Test for Unit 1
Loop Invariants and Iterative Algorithms

Jeff Edmonds

First learn the steps. Then try them on your own. If you get stuck only look at a little of the answer and
then try to continue on your own.

1. Tiling Chess Board: You are given a 2n by 2n chess board. You have many tiles each of which can
cover two adjacent squares. Your goal is to place non-overlapping tiles on the board to cover each of the
2n × 2n tiles except for to top-left corner and the bottom-right corner. Prove that this is impossible.
To do this give a loop invariant that is general enough to work for any algorithm that places tiles.
Hint: chess boards color the squares black and white.

2. Longest Contiguous Increasing Subsequence (LCIS): The input consists of a sequence A[1..n]
of integers and we want to find a longest contiguous subsequence A[k1..k2] such that the elements are
strictly increasing. For example, the optimal solution for [5, 3, 1, 3, 7, 7, 9, 8] is [1, 3, 7].

(a) Provide a tight lower bound on the running time for this problem. Prove that your answer is
indeed a tight lower bound.

(b) Specify an appropriate loop-invariant, measure of progress and exit condition for an iterative
solution to this problem. No explanations are necessary.

(c) Provide concise pseudo-code for an algorithm LCIS(A,n) that returns the indices k1, k2 of the
LCIS of A[1 . . . n] uses the loop-invariant, measure of progress and exit condition you specified
above. Assume n ≥ 1.

(d) Provide an informal argument for how your code is able to maintain the loop invariant. A formal
proof is not required.

(e) What are the other key steps in proving your algorithm correct? List and provide a concise proof
for each.

3. d+ 1 Colouring: Given an undirected graph G such that each node has at most d neighbors, colour
each node with one of d + 1 colours so that for each edge the two nodes have different colours. Hint:
Don’t think too hard. Just colour the nodes. What loop invariant do you need?
Hint: All it will say is that you have not gone wrong yet.
Give all the steps done in class to develop this iterative algorithm.

In Sides or Videos

4. (Answer in slides)
Iterative Cake Cutting: The famous algorithm for fairly cutting a cake in two is for one person
to cut the cake in the place that he believes is half and for the other person to choose which “half”
he likes. One player may value the icing more while the other the cake more, but it does not matter.
The second player is guaranteed to get a piece that he considers to be worth at least a half because he
choose between two pieces whose sum worth for him is at least a one. Because the first person cut it
in half according to his own criteria, he is happy which ever piece is left for him. Our goal is write an
iterative algorithm which solves this same problem for n players.

To make our life easier, we view a cake not as three dimensional thing, but as the line from zero to
one. Different players value different subintervals of the cake differently. To express this, he assigns
some numeric value to each subinterval. For example, if player pi’s name is written on the subinterval

[i−1

2n
, i
2n

] of cake then he might allocate a higher numeric value to it, say 1

2
. The only requirement is

that the sum total value of the cake is one.

Your algorithm is only allowed the following two operations. In an evaluation query, v = Eval(p, [a, b]),
the algorithm asks a player p how much v he values a particular subinterval [a, b] of the whole cake
[0, 1]. In a cut query, b = Cut(p, a, v), the protocol asks the player p to identify the shortest subinterval
[a, b] starting at a given left endpoint a, with a given value v. In the above example, Eval(pi, [

i−1

2n
, i
2n

])

returns 1

2
and Cut(pi,

i−1

2n
, 1

2
) returns i

2n
. Using these the two player algorithm is as follows.

algorithm Partition2({p1, p2}, [a, b])

〈pre−cond〉: p1 and p2 are players.
[a, b] ⊆ [0, 1] is a subinterval of the whole cake.

〈post−cond〉: Returns a partitioning of [a, b] into two disjoint pieces [a1, b1] and [a2, b2] so that player
pi values [ai, bi] at least half as much as he values [a, b].

begin
v1 = Eval(p1, [a, b])
c = Cut(p1, a,

v1

2
)

if(Eval(p2, [a, c]) ≤ Eval(p2, [c, b])) then
[a1, b1] = [a, c] and [a2, b2] = [c, b]

else
[a1, b1] = [c, b] and [a2, b2] = [a, c]

end if
return([a1, b1] and [a2, b2])

end algorithm

The problem that you must solve is the following

algorithm Partition(n, P)

〈pre−cond〉: P is a set of n players.
Each player in P values the whole cake [0, 1] by at least one.

〈post−cond〉: Returns a partitioning of [0, 1] into n disjoint pieces [ai, bi] so that for each i ∈ P , the
player pi values [ai, bi] by at least 1

n
.

begin
. . .
end algorithm

(a) Can you cut off n pieces of cake, each of size strictly bigger than 1

n
, and have cake left over? Is it

sometimes possible to allocated a disjoint piece to each player, each worth by the receiving player
much more than 1

n
, and for there to still be cake left? Explain.

(b) Give all the required steps to describe this LI algorithm. (Even if you do not know how to do a
step for this algorithm, minimally state the step.)

As a big hint to designing an iterative algorithm, we will tell you what the first iteration accom-
plishes. (Later iterations may do slightly modified things.) Each player specifies where he would
cut if he were to cut off the first 1

n
fraction of the [a, b] cake. The player who wants the smallest

amount of this first part of the cake is given this piece of the cake. The code for this is as follows.

loop i ∈ P

ci = Cut(pi, 0,
1

n
)

end loop
imin = the i ∈ P that minimizes ci

[aimin
, bimin

] = [0, cimin
]

2

As a second big hint, your loop invariant should include:

i. How the cake has been cut so far.

ii. Who has been given cake and how do they feel about it.

iii. How do the remaining players feel about the remaining cake.

5. (Answer in slides)
Sorted Matrix Search: Search a Sorted Matrix Problem: The input consists of a real number x and
a matrix A[1..n, 1..m] of nm real numbers such that each row A[i, 1..m] is sorted from left to right and
each column A[1..n, j] is sorted from top to bottom. The goal is to determine if the key x appears in
the matrix. Design and analyze an iterative algorithm for this problem that examines as few matrix
entries as possible. Careful, if you believe that a simple binary search solves the problem. Later we
will ask for a lower bound and for a recursive algorithm.

6. (Answer in slides)
Connected Components: The input is a matrix I of pixels. Each pixel is either black or white.
A pixel is considered to be connected to the four pixels left, right, up, and down from it, but not
diagonal to it. The algorithm must allocated a unique name to each connected black component. (The
name could simply be 1,2,3,. . ., to the number of components.) The output consists of another matrix
Names where Names(x, y) = 0 if the pixel I(x, y) is white and Names(x, y) = i if the pixel I(x, y) is
a part of the component named i. The algorithm reads the matrix from a tape row by row as follows.

loop y = 1 . . . h
loop x = 1 . . . w

〈loop−invariant〉: ??

if(I(x, y)=white)
Names(x, y) = 0

else
???

end if
end loop

end loop
end algorithm

The image may contain spirals and funny shapes. Connected components may contain holes that
contain other connected components. A particularly interesting case is the image of a comb consisting
of many teeth held together at the bottom by a handle. Scanning the image row by row, one would
would first see each tooth as a separate component. As the handle is read, these teeth would merge
into one.

(a) Give the classic more of the input loop invariant algorithm. Don’t worry about its running time.

(b) This version of the question is easier in that the matrix Names need not be produced. The
output is simply the number of connected black components in the image. However, this version
of the question is harder in your computation is limited in the amount of memory it can use. For
example, you don’t remember pixels that you have read if you do not store them in this limited
memory and you don’t have nearly enough memory to store them all. The number of components
may be Θ(the pixels) so you cant store all of them either. How little memory can you get away
with?

(c) In this this final version, in addition to a small amount of fast memory, you have a small number
of tapes for storing data. Data access on tapes, however, is quite limited. A tape is in one of
three modes and cannot switch modes mid operation. In the first mode, the data on a tape
is read forwards one data item at a time in order. The second mode, is the same except it is
read backwards. In the third mode, the tape is written to. However, the command is simply
write(data) which appends this data to the end of the tape. Data on a tape cannot be changed.

3

All you can do is to erase the entire tape and start writing again from the beginning. An algorithm
must consist of a number of passes. The first pass reads the input from the input tape one pixel
at a time row by row in order. As it goes, the algorithm updates what is store in fast memory
and outputs data in order onto a small number output tapes. Successive passes can read what
was written during a previous pass and/or the input again. The last pass must write the required
output Names onto a tape. You want to use as little fast memory and as few passes as possible.
For each pass clearly state the loop invariant.

7. (Answer in videos)
A tournament is a directed graph (see Section ??) formed by taking the complete undirected graph
and assigning arbitrary directions on the edges, i.e., a graph G = (V,E) such that for each u, v ∈ V ,
exactly one of 〈u, v〉 or 〈v, u〉 is in E. A Hamiltonian path is a path through a graph that can start
and finish any where but must visit every node exactly once each. Design an algorithm which finds a
Hamiltonian path through it given any tournament. Because this algorithm finds a Hamiltonian path
for each tournament, this algorithm, in itself, acts as proof that every tournament has a Hamiltonian
path.

8. (Answer in videos)
An Euler tour in an undirected graph is a cycle that passes through each edge exactly once. A graph
contains an Eulerian cycle iff it is connected and the degree of each vertex is even. Given such a graph
find such a cycle.

In Lectures

9. Pointers (Answer in slides)
“And the last shall be first!”
(For each of A-K see the figure on the next page labeled with the corresponding letter. Here n = 6.)

A: Precondition; The input to this problem is a linked list of n nodes in which the last node points
back to the first forming a circle. The variable last points at the “last” node in the list. The
nodes are of type Node containing a field info and a field next of type Node which is to point at
the next node in the list. The values 1, 2, . . . , 6 in figure are just to help you and cannot be used
in the code.

B: Postcondition; The required output to this problem consists of the same nodes in the same circle,
except each node now points at the “previous” node instead of the “next”. In other words the
pointers are turned from clockwise to counter clockwise. The variable last still points at the same
node, but this “last” node has become “first”.

C: Loop Invariantt; Your algorithm for this problem will be iterative (i.e. a loop taking one step at
a time). Your first task is to give the loop invariant. This is not done in words but by drawing
what the data structure will look like after the algorithm has executed it’s loop t = 2 times. Hint:
Nodes with value 1 and 2 have their pointers fixed. Hint: You may need a couple of additional
pointers to hold things in place. Give them as meaningful names as possible.

D: Loop Invariantt+1; The next task in developing an iterative algorithm is:

- Maintain the Loop Invariant:
We arrived at the top of the loop knowing only that the Loop Invariant is true and the
Exit Condition is not.
We must take one step (iteration) (making some kind of progress).
And then prove that the Loop Invariant will be true when we arrive back at the top of
the loop.
〈loop−invariantt〉 & not 〈exit−cond〉 & codeloop ⇒ 〈loop−invariantt+1〉

4

Towards this task, draw what the data structure will look like after the algorithm has executed
it’s loop one more time, i.e. t+1 = 3 times.

E: Code C to D; In space E, give me the code to change the data structure in figure C into that in
figure D. This will be the code within the loop that makes progress while maintaining the loop
invariant. Assume every variable and field is public.

F: Loop Invariant0; The next task in developing an iterative algorithm is:

- Establish the Loop Invariant:
Our computation has just begun and all we know is that we have an input instance that
meets the Pre Condition.
Being lazy, we want to do the minimum amount of work.
And to prove that it follows that the Loop Invariant is then true.
〈pre−cond〉 & codepre−loop ⇒ 〈loop−invariant〉

Towards this task, draw what the data structure will look like when the algorithm is at the
top of the loop but has has executed this loop zero times. Make it as similar as possible to the
precondition so that minimal work needs to be done in G.

G: Code A to F; In space G, give me the code to change the data structure in figure A into that in
figure F. This will be the initial code that establishes the loop invariant.

H: Loop Invariantn; The next task in developing an iterative algorithm is:

- Obtain the Post Condition:
We know the Loop Invariant is true because we have maintained it.
We know the Exit Condition is true because we exited.
We do a little extra work.
And then prove that it follows that the Post Condition is true.
〈loop−invariant〉 & 〈exit−cond〉 & codepost−loop ⇒ 〈post−cond〉

Towards this task, draw what the data structure will look like after the algorithm has executed
it’s loop n times. Make it as similar as possible to the postcondition so that minimal work needs
to be done in J.

I: Exit Condition: What is the exit condition, i.e. how does your code recognize that it is in the
state you drew in H, given that the algorithm does not know n (and did not count t) and does
not know the values 1, 2, . . . , 6. Also be careful that your exit condition does not have you drop
out at state D.

J: Code H to B; In space J, give me the code to change the data structure in figure H into that in
figure B. This will be the final code that establishes the post condition.

K: Give the complete code; Put all the code together into a routine solving the problem.

5

H: Loop Invariant n

0F: Loop Invariant

tC: Loop Invariant D: Loop Invariant t+1

A: Precondition G: Code A to F

E: Code C to D

6

1

2

3

4

5

6

15

2

3

4 4

3

2

5 1

6

6

15

2

3

4

last

6

15

2

3

4

6

1

2

3

4

5

last

K: Give the complete code

I: Exit Condition B: Post Condition

last

last

last

last

J: Code H to B

10. (Answer in slides)
Lake Problem:
You are in the middle of a lake of radius one. You can swim at a speed of one and can run infinitely
fast. There is a smart monster on the shore who can’t go in the water but can run at a speed of four.
Your goal is to swim to shore arriving at a spot where the monster is not and then run away. If you
swim directly to shore, it will take you 1 time unit. In this time, the monster will run the distance
Π < 4 around to where you land and eat you. Your better strategy is to maintain the most obvious
loop invariant while increasing the most obvious measure of progress for as long as possible and then
swim for it. Describe how this works.

11. Iterative 3 In A Row In An Infinite Line:
The game board consists of a single line of squares that is infinitely long in both directions. Each
iteration your opponent places a white piece and then you place a black piece. If a player gets three
in a row he wins. Your primary goal is to stop him from doing this. If the game goes on forever then
this is considered a tie.

Your game strategy will be to maintain the following loop invariants
After we each have played the same number of times the following are true.

(a) Every contiguous block of whites has a black on its left end.

(b) Every contiguous block of whites of length two or more also has a black on its right end.

(c) There are no contiguous blocks of white of length three or more.

6

(i.e. A block consisting of one white has a black to its left, a block with two whites has a black on both
ends, and there are no blocks of length three or more.)

The exit condition will be that someone has won.
The post condition will be that you win.

Your task is to follow all the loop invariant steps outlined in the steps and then to prove that either
the game goes on forever as a tie or you win.

Suppose your opponent has just placed a white. There are nine cases depending on whether there is
a black, white, or blank on the left of this newly placed white and whether there is a black, white, or
blank on the right. To help you, I group these nine into the five cases indicated in the following five
lines. Then I group these further into three cases indicated by the black dots. In each of these five
cases, state where you will place your black in response and in each of these three cases, prove that
this maintains each of the three loop invariants.

• There is a blank to the left of where he placed his white.
There is a black to the left.

• There is a white to the left and a blank to the right.
There is a white to the left and a black to the right.

• There is a white to the left and a white to the right.

Is it possible to have an algorithm that guarantees you win even if you go first?

12. Iterative n In A Row In An Infinite Line:
The game board is an infinitely long line of squares. In a normal round, you will place a white and
then your opponent a black. The goal is to build long contiguous blocks of your colour. We proved
in test 1 that there is no algorithm that allows you to build a block longer than two. We will now
develop an algorithm that builds arbitrarily long contiguous white blocks. To help, you will be given
the advantage that every ten round you get to place a white but your opponent must skip his turn.
(The regular expression is ((WB)9W)∗.)

It seemed at first to me that even if you got 100 times as many turns, that you could not build a
contiguous block longer than 200, i.e. you put a 100, he caps one end by placing a black there, you
place a second 100 on the other end, and he caps that end with a black. If you did manage to build a
really long block, it would take you a while. Then in just two moves he can destroy it by capping both
ends. Surprisingly, you can build arbitrarily long lines. (Funny though you can’t just build a block
that gets longer and longer arbitrarily. You must have the length you want to build in mind when you
start.)

To make the algorithm easier, lets assume that the opponent is not trying to build a block of blacks.
His only goal is to prevent you from building a long contiguous block of white by capping the ends
of any block you are working on with a black. All blocks that we start will be far enough away from
each other that they will never grow long enough to interact with each other. We will be cautious. If
the opponent caps one of the ends of one of our blocks or even puts a black anywhere near that block,
then we will not wait for him to cap the second end but will abandon that block completely. Hence,
all we are concerned about is how many blocks we have that have no blacks near them and how long
are these blocks are. The adversary each of his turns, being as greedy as he can be, will simply cap
the first end of our currently longest such block. Given this, we will keep our blocks as close to being
the same size as possible.

Input: The input to this problem is an integer n (say a billion).

Precondition: The board is empty.

Postcondition: You have produced a continuous block of whites of length n.

Iterations: This will be an iterative algorithm. You will have “iterations” for i = 0, 1, . . . , n. Each
such iteration will contain as many rounds of turns as you need to make progress and maintain
the loop invariant.

7

Loop Invariant: After i “iterations”, you have constructed many special blocks.

Length: Each such special block consists of i whites in a row.

Isolation: Each is far away from any black and from each other.

Number: The number of such special blocks in 10n−i.

In addition to these special blocks the board will contain many white blocks that are abandoned
because they have a black on one end.

• Complete Jeff’s steps in completing the description/proof of this algorithm.

• Also compute the total number N of whites that you place.

13. Multiplying: The ancient Egyptians and the Ethiopians had advanced mathematics. Merely by
halving and doubling, they could multiply any two numbers correctly. Say they want to buy 15 sheep
at 13 Ethiopian dollars each. Here is how he figures out the product. Put 13 in a left column, 15 on
the right. Halve the left value; you get 6 1

2
. Ignore the 1

2
. Double the right value. Repeat this (keeping

all intermediate values) until the left value is 1. What you have is

13 15

6 30

3 60

1 120

Even numbers in the left column are evil and, according the story, must be destroyed, along with
their guilty partners. So scratch out the 6 and its partner 30. Now add the right column giving
15 + 60 + 120 = 195, which is the correct answer.

Give the key steps to describe this LI algorithm.

Hint: Our code does not need remember all previous values. Instead, let x and y hold the original
input integers, let ℓ hold the current left value, r the current right, and s the sum of all previous right
values that will be included in the final answer.

Hint: Break steps within the loop (and proof that the loop invariant is maintained) into two steps. In
the first step, if ℓ is odd it decreases by one. In the second step, ℓ (now even) is divided by two. These
steps, must update r and s as needed. The running values will be as follows.

ℓ r s

13 15 0

12 15 15

6 30 15

3 60 15

2 60 75

1 120 75

0 120 195

(a) Specification:
〈pre−cond〉 is that the input instance consists of two positive integers x and y.
〈post−cond〉 is that the output is their product.

(b) * Define Loop Invariant: Give a meaningful loop invariant relating the current values of ℓ, r,
s, x, and y. (Hint, look at the Shrinking Instance loop invariant.) (5 marks)

(c) * Establishing the Loop Invariant: (5 marks)

(d) Picture: If it is helpful for you, draw pictures to give a geometric explanation for the steps. (0
marks)

(e) Step: If it is helpful for you, define the Step in the loop (or even all the code). (0 marks)

(f) Maintaining the Loop Invariant for the first half of the step. (5 marks)

(g) Maintaining the Loop Invariant for the second half of the step. (5 marks)

(h) * Ending: Obtain the Postcondition.
Hint: What is the Ethiopian exit condition? How might you improve on this? (5 marks)

(i) Time Complexity: Give the time complexity of our multiplication algorithm. (5 marks)

8

14. (Answer in slides)
Multiplying using Adding: My son and I wrote a JAVA compiler for his grade 10 project. We
needed the following. Suppose you want to multiply X × Y two n bit positive integers X and Y . The
challenge is that the only operations you have are adding, subtracting, and tests like ≤. The standard
high school algorithm seems to require looking at the bits of X and Y and hence can’t obviously be
implemented here. The Ethiopian algorithm requires dividing by two, so can’t be implemented either.
A few years after developing this algorithm, I noticed that it is in fact identical to this high school
multiplication algorithm, but I don’t want to tell you this because I don’t want you thinking about the
algorithm as a whole. This will only frighten you. All you need to do is to take it one step at a time. I
want only want you to establish and maintain the loop invariant and use it to get the post condition.
(The flavor is very similar to what was done in the Ethiopian problem on the practice test.) To help,
I will give you the loop invariants, the measure of progress, and the exit condition. I also want you
to explain what the time complexity of this algorithm is, i.e. the number of iterations and the total
number of bit operations as a function of the size of the input.

We have values i, x, a, u[], and v[] such that

Useful Arrays: Before the main loop, I will set up two arrays for you with the following values. Then
they will not be changed.

LI0’: u[j] = 2j , (for all j until u[j] > X)

LI0”: v[j] = u[j]× Y . Note v[j]− u[j]× Y = 0

My Code: For completion, I include my code, but it is not necessary for you to understand it.

u[0] = 1
v[0] = Y

j = 0
while(u[j] ≤ X)

u[j + 1] = u[j] + u[j]
v[j + 1] = v[j] + v[j]
j = j + 1

end while

For Main Loop: These are the loop invariants for you to deal with.

LI0: Neither X nor Y change.

LI1: X × Y = x× Y + a (i.e. Shrinking Instance)

LI2: x ≥ 0

LI3: x < 2i = u[i] (below are two cases)

2
i−1

u[i]u[i−1]u[i]u[i−1]

ix0 2
x ii−1

Case 2Case 1

220

Measure of progress: i. It decreases by 1 each iteration.

Exit Condition: i = 0

Use the steps laid out in class to complete the description of the algorithm.

15. Computing square root digit by digit: The following is the algorithm for taking square roots that I
learned in high school. The loop invariant is both the classic more of the input and the classic more
of the output. As such, you should be able to quickly complete the steps. Do not panic. Your job is
simply to trust and follow the steps. It should all fall out simply.

I wrote a long and fascinating explanation of how this algorithm looks like long division. But on
reflection it was not necessary to do the test and only distracted. It will be included in the solution
set.

As I have often said — do not try to understand this algorithm.

9

algorithm SquareRoot(p)

〈pre−cond〉: P is an integer
but we pair its digits as P = 〈a1, . . . , at, . . . , an〉 = 〈07, 80, 14, 71, 23〉 = 0780147123.

〈post−cond〉: Q is the square root of P rounded down to the nearest integer.
We consider its digits as Q = 〈b1, . . . , bt, . . . , bn〉 = 〈2, 7, 9, 3, 1〉 = 27931.
R = P −Q2 is the remainder.

begin
??
loop

〈loop−invariant〉: From more of the input we have p = 〈a1, . . . , at〉.
From more of the output we have q = 〈b1, . . . , bt〉.
As integers, q is the largest integer for which r = p− q2 and r ≥ 0

exit when ??
a = at+1 = next pair of digits in P

p = 100p+ a

R = 100r + a

loop b = 9, 8, . . . , 0
s = (10(2q) + b)× b

r = R− s

exit when r ≥ 0
end loop
q = 10q + b

end loop
return(〈q, r〉)

end algorithm

Hint: Ignore the loop over b. Just assume that it is setting b to be the biggest value in {0, .., 9} for
which r is non-negative.

(a) (8 + 8 + 24 = 40 marks) Complete the three key loop invariant steps for this algorithm.

(b) (8 marks) Determine the running time of algorithms.

10

