COSC3101 Design and Analysis of Algorithms
Jeff Edmonds & Andy Mirzaian — Fall 00-01
Midterm Test Solutions

1. True/False: (20 points)
For each of the statements that follow indicate only whether it is true or false by circling T (true) or
F (false). Do not justify your answer. Each correct answer is worth +4 points. Each incorrect answer
or no answer is worth 0 points.

8
(a) [T F ]: 2°18" 4 23n7(log n)* = O((iomys)-
e Answer: True. The first term on the left hand side is n®, which is dominated by the second

term, which is dominated by the right hand side. Recall that (logn)? = o(n) holds for any
constant d.

(b) [ T F ]: The running time of Insertion-Sort is ©(n + I), where I is the number of inversions in
the input array A[l..n]. (An inversion is any pair of items A[i] and A[j] such that A[{] < A[j] but
i>7.)

e Answer: True. See the InsertionSort algorithm on page 8 of CLR. In the i-th iteration of the
main loop, the amount of time spent is in the order of 1 plus the number of items preceding

A[i] that form an inversion with A[i]. Thus, taking the sum over all iterations, the total time
is indeed O(n + I).

(¢) [ T F ]: In the worst case QuickSort takes ©(nlogn) time to sort n elements.

e Answer: False. It takes ©(n?) time in the worst case, and ©(nlogn) time in the expected
case.

(d) [ T F ]: Let A[l..n] be an array of n elements such that we already know A[i] < A[i + 4] for all
1 =1,2,3,...,n — 4. Even with this extra information as precondition, every decision tree that
completes the sorting of A[1..n] must have height at least Q(nlogn).

e Answer: False. The 4 sorted sublists can be merged in ©(n) time.

() [ T F ]: Given an arbitrary sorted array A[l..n] of reals, we can determine whether A has a
majority element or not in ©(logn) time in the worst case. (A magjority element in A is one that
appears more than n/2 times.)

e Answer: True. Since A is sorted, if A has a majority, it has to be the middle element
z = A[[n/2]]. Using two binary searches, we can find the minimum and maximum indices i
and j such that = A[i] = A[j]. The number of times z appears in A is j —i + 1. If this
count is greater than n/2, then x is the majority; otherwise there is no majority.

2. f(n) =n®M
(a) (1 point) Informally, which functions are included in the classification f(n) = n®1)?

e Answer: Bounded by a polynomial.

(b) (3 points) The formal definition of f(n) = n®W includes three parameters ¢;, ¢z, and ng. Give
this formal definition.
e Answer: The formal definition is ¢y > 0,¢2 > 0,n9, Vn > ng, n° < f(n) < nc2.

(¢) (12 points) Which of the following are f(n) = n®M? If so, give suitable values of ¢; and ¢, for
when ng = 1000000.
i. f(n) =3n3+17n% +4 Answer: Yes, ¢; = 3, co = 3.1
ii. f(n) =3n%logn Answer: Yes, ¢c; = 3, ¢z = 3.1. Note 3n®logn < O(n?1).
iii. f(n) =n%8" Answer: No, ¢ =logn
iv. f(n) = 3logn Answer: No, ¢; would need to be zero.



v. f(n) = 731°8" Answer: Yes. 731087 = p31087 ¢; = ¢y = 3log7.
vi. f(n) = [logn]! Answer: No. Note that (})2 < m! < m™. Therefore, [logn]! =
(log n)@(log n) — n@(loglogn) ;é n@(l)‘

3. Sums & Recurrences: (21 points)
Derive tight asymptotic bound solutions to the following. Mention the method you use for each.
(For the recurrences you may assume the usual boundary condition: T'(O(1)) = O(1).)

(a) i, 48 x (logi)® = O(

e Answer: Arithmetic-like sum: ©(n®(logn)®).
(b) TI, 8% x i¥ = O

e Answer: Geometric-like sum: ©(3%" x n8).
(©) Xiti 77 =0(

e Answer: Bounded Tail: ©(1).
(d) T(n) =2T(n—1)+1, T(n) = 6(

e Answer: Unwinds to T(n) = Y77, 20 = ©(2").
(e) T(n) =3T(%)+ 3(logn)?, T(n) = 6(

e Answer: T'(n) = G)(nll‘;%) = @(n%) = O(n).
(f) T(n) =9T (n/3) + Tnlogn + 2n?, T(n) = O(

e Answer: @(n%) = @(n%) = O(n?) = O(f(n)). Therefore, T(n) = O(f(n)logn) =

O(n?logn).

(8) T(n) = T(n —1) +n, T(n) = O

e Answer: Unwinds to T'(n) = Y., i = ©O(n?).

4. Tteration & Loop Invariants: (20 points)

We are given an arbitrary sorted array A[l..n] of n real numbers. Some items may appear several
times in A. The problem is to find an item that occurs most often in A.

Use iteration and loop invariants to design, describe, and prove the correctness of an incremental
algorithm for the above problem. Be sure to include ALL required steps.

o Answer:

MostOften (A n)
(Pre-condition): A[l..n] is a sorted array of reals.
i=1p=1,c=null,g=0
loop
% (loop invariant )

— The index i has some value in [1..n + 1].
The variable p stores the number of times A[i] appears in A[1..4] if ¢ < n.
— The variable ¢ stores which element other than A[i] occurs most often in A[1..i—1].

The variable ¢ stores the number of times ¢ appears in A[l..i — 1].
exit when i =n+1
if( i < n and A[{ + 1] = A[4] ) then
p=p+1
else
if( p>q ) then
¢ = Ali]



q=Dp
end if
p=1
end if
t=1+1
end loop
return(c)
{Post-condition): Returns an element occurring the most often in A[l..n].
end MostOften

(preCond) & codeA = (loop — invariant): A[1] appears once A[1..1]. No other element
appears. Hence, setting i = 1,p = 1, ¢ = null, ¢ = 0 satisfies the loop invariant.

(loop — invariant’) & not (exitCond’) & codeB = (loop — invariant): Because

A[l..n] is a sorted array, the equal items appear together in a block. There are two cases. If
i <n and A[i+1] = A[i], then the same block is extended one further. Hence, the number of
times that A[i] = A[i+1] appears in the subarray increases by one and the largest previous
block does not change.
On the other hand, if A[i+1] # A[i] or i = n, then the current block terminates and a new
block begins. This newly completed block becomes a potential largest previous block. If it is
the largest, then ¢ and ¢ are changed to reflect this. p is set to one to reflect that the newly
created first block is of size one.

(loop — invariant) & (exitCond) & codeC = (postCond): LI and exit condition give
“The variable ¢ stores which element (other than A[n + 1]) occurs most often in A[l..n].
The code is such that A[n + 1] is never accessed and is assumed not to appear in A[l..n].
Hence, the variable ¢ stores which element occurs most often in A[l..n]. Returning the value
of ¢ satisfies the post condition.

A measure of progress: The value i.
Progress is made (if not exit): ¢ is incremented.

Proof that with sufficient progress, the exit condition will be met: When i reaches n+
1, we exit.

5. Recursion on Binary Trees: (23 points)
We are given an arbitrary binary search tree 7. Each node of T stores an item which is a real
number. The problem is to find a closest pair of items in 7', that is, a pair of items (distinct nodes) in
T with minimum possible difference in value.
Design a recursive algorithm for this problem, and prove its correctness by induction.

e Answer: We will provide two answers. The first requests extra information from the friend by
changing the post conditions and the second provides extra information to the friend by changing
the pre conditions.

First Answer: The routine returns a closest pair {a,b) appearing in distinct nodes with a < b.
If there are fewer than two nodes in the tree then no such pair exits. Hence, the routine returns
(a, b) such that b—a = co. In addition, the routine returns the minimum M4n, and the maximum
Mazx elements in the tree.

function (a, b, min,max) ClosestPair (treeObj T)

if(T = emptyTree) then
return {(—o00, 00, 00, —00)

else
(lefta,leftb,leftMin,left Maz) = ClosestPair(T.left)
(righta, rightb, right Min, right Maxz) = Closest Pair(T.right)
min = min(le ft Min, T .key)
maz = max(right Max, T .key)



(a,b) = a closest pair from
{{lefta,leftdb), (leftMax, T.key), (T .key,rightMin) , (righta, rightb)}.
return (a, b, min, maz)
end if
end ClosestPair

For each n > 0, let S(n) be the statement, “The recursive algorithm works for every binary search
tree T with n nodes.” We will prove by strong induction on n that ¥n > 0, S(n). From this, we
will conclude that “The recursive algorithm works for every instance.”

Proving S(0) involves showing that the algorithm works for the empty tree. In this case, the
algorithm returns (a,b) = (—o00,00), Min = oo and Max = —oo. As said, these are reasonable
answers, because the tree has no pairs and no minimum or maximum nodes.

Let n > 0. The strong induction step assumes S(0),S(1),5(2),...,S(n — 1) and from it proves
S(n). In other words, it first assumes that the algorithm works for every instance of size strictly
smaller than n and then proves that it works for every instance of size n. In yet other words, we
assume that by “magic” a friend is able to provide the solution to any instance of the problem
as long as the instance is strictly smaller than the current instance. To prove that the algorithm
works for every instance T of size n, consider an arbitrary instance of size n. Because T"’s left and
right subtrees have fewer than n nodes, we know by the induction hypothesis that the recursive
call correctly returns a closest pair of items, the minimum, and the maximum from these subtrees.
What remains to be shown is that the {a, b), min, and maz returned by the algorithm are correct
for T'.

The closest pair will appear consecutively in the sorted order of the items. Because T is a
binary search tree, this order will be [T.left,leftMax, T.key,right Min, T.right]. The left recur-
sion will provide the closest pair {lefta,leftb) within T.left and the right recursion will provide
the closest pair (righta,rightb) within T.right. It follows that a closest pair is one of those in
{(lefta,leftd),({left Maz, T .key),{T .key, rightMin) ,(righta,rightb)}. Our routine returns the
best of these.

It is best to check to make sure that the routine (and proof) work when one or both of the subtrees
are empty. If the left subtree is empty, then pairs (lefta, leftb) and (left M ax,T.key) involving it
will have infinite gap. Hence, these will not be returned (unless this is the closest pair). Similarly,
if the right subtree is empty, then pairs (T.key, right Min) and (righta,rightb) will have infinite
gap.

It follows that the pair (a,b) returned by the algorithm is a closest pair in T'. It is easy to see
that maz and min are the maximum and the minimum in the tree.

By way of strong induction, we can conclude that Vn > 0, S(n), i.e., The recursive algorithm
works for every instance.

Second Answer: This solution provides extra information to the friend by changing the pre
conditions. In addition to a binary search tree 7', an input instance includes two additional items
pre and post with the requirement that pre is less than or equal to and post is greater than
or equal to all the items within 7. The main algorithm returns ClosestPair(—oo,T,00). The
routine returns a closest pair {(a, b) appearing in pre U T U post.

function (a,b) ClosestPair (pre,teeObj T, post)
if(T = emptyTree) then
return (pre, post)
else
(lefta,leftb) = ClosestPair(pre, T.left, T.key)
(righta, rightb) = ClosestPair(T.key, T.right, post)
(a,b) = a closest pair from {{lefta,leftd), (righta,rightb)}.
return {a, b)
end if
end ClosestPair



The structure of the proof is similar to that above. Given the empty tree, the routine returns the
pair (pre, post) because this is the only pair available.

Now consider any tree with at least one node and assume that the friends/recursion pro-
vides the correct answer for the (smaller) left and right subtrees. The closest pair will ap-
pear consecutively in the sorted order of the items. By the preconditions, this order will be
[pre,T.left, T.key,T.right,post]. The left recursion will provide the closest pair (lefta,leftb)
within [pre, T.left, T.key]. The right recursion will provide the closest pair (righta, rightb) within
[T.key, T.right, post]. Our routine returns the best of these.



