
York University

CSE 2001 Fall 2017 – Midterm E
Instructor: Jeff Edmonds

1. Consider the alphabet Σ = {a, b}. Describe in English a property defining which strings are in the
language Σ∗a.

• Answer: The language consists of all strings of a and b that end in an a.

2. Short Answers: What does the following mean, is it true, and very quickly why?

• “The regular languages are closed under intersection”

• “Every subset of a regular language is regular.”

• Answer:

(a) If L1 and L2 are regular then so is L1∩L2. True. Proof: Given DFA M1 and M2 we construct
a DFA such that L(M) = L(M1) ∩ L(M2).

(b) If L1 is regular and L2 ⊆ L1, then L2 is regular. False: 0n1n ⊆ {0, 1}∗, the second is regular
and the first is not.

3. First Order Logic: We state as follows that a Universal TM is a TM Muniversal is given a description
of a TM M and its input I and simulates this computation.

∃ a TM Muniversal, ∀ inputs Iuniversal = 〈M, I〉, Muniversal(M, I) = M(I).

How is the First Order Logic Game game played for this statement?

Explain how this game states whether Muniversal is likely to have more states or fewer than M .

• Answer: First Order Logic Game:
We construct Muniversal

The adversary gives us an arbitrary input Iuniversal = 〈M, I〉
(Knowing Muniversal and hence M can be much bigger than Muniversal)
Prove Muniversal(M, I) = M(I).

4. Turing Machine: (25 marks) Write all the transition rules for a Turing Machine that solves the
computational problem that takes as input a string of characters from {0, 1, ..., 9} and replaces any
occurrence of 666 with 667. Longer blocks of 6 are not changed.

Input: 943666982796666293666
Output: 943667982796666293667

Pseudo Code:

0: Put head on first character.
c = getCharAtHead()
♯6 = 0

1: loop 〈loop−invariant〉: The variable ♯6 holds the number of 6 in the continuous block
to the left of the head and that we are looking at a new character c. Previous
changes have been made.

1

if( ♯6 = 3 and c 6= 6) then we have see 666
Go back to change 666 to 667
i.e. move left back to char 6 and go to line 2

elseif( c =blank )
Halt

elseif( c = 6 ) Current block of 6 has another
♯6 = min(♯6 + 1, 4)

1



else then current block of 6 has ended
♯6 = 0

Move right to next character
c = getCharAtHead()

end loop
2: Subroutine: Change 666 to 667

writing a 7
move right back to character we were just on
♯6 = 0
goto line 1

(a) Translate this code into Turing Machine Transitions.

(b) How many states does your TM have?

• Answer: The first thing to know is the form of the transition function is δ(q, c) =
〈q′, c′, direction〉, i.e. when in current state is q and the character on the tape being seen by
the head is c, then transition to state q′, write c′ onto the tape, and move the head in the direc-
tion indicated.
The second thing to know is that the names of the states should indicate which line the pseudo
code is in and what values are being saved on pooh bear’s black board.

(a) Turing Machine Transitions Start State: q〈line=1,♯6=0〉

i = 3 and ∀c ∈ {0, .., 9} − 6 + blank

δ(q〈line=1,♯6=3〉, c) =
〈

q〈line=2〉, c, left
〉

∀i ∈ {0, 1, 2, 4} and c = blank

δ(q〈line=1,♯6=i〉, blank) =
〈

q〈line=halt〉, blank, stay
〉

∀i ∈ {0, 1, 2, 3, 4} and c = 6
δ(q〈line=1,♯6=i〉, 6) =

〈

q〈line=1,♯6=min(i+1,4)〉, 6, right
〉

∀i ∈ {0, 1, 2, 4} and ∀c ∈ {0, .., 9} − 6
δ(q〈line=1,♯6=i〉, c) =

〈

q〈line=1,♯6=0〉, c, right
〉

Have gone back to write the 7.
δ(q〈line=2〉, 6) =

〈

q〈line=1,♯6=0〉, 7, right
〉

(b) It has 5 + 1 + 1 = 7 states counting the halt state.

5. DFA: Draw a DFA for the following language.
L = {α ∈ {0, 1} | α contains the substring 01 an even number of times }.
Example: 1100110001100 contains 01 twice, two is even, and hence the string is in the language. 1100
does not contain it, zero is even, and hence the string is in the language.
Be sure to label the states of your DFA with names indicating what the DFA “knows” when in that
state.

• Answer:

1

1 0
0

0

11

0

# 01 even

# 01 odd

Ends in 1

Ends in 0

# 01 odd
Ends in 1

# 01 even
Ends in 0

6. Bumping Lemma is stated as follows:

[∃ infinite set S, ∀α, β ∈ S with α 6= β, ∃ζ, L(αζ) 6= L(βζ)] ⇒ [∀ DFA M , ∃ an input I, M(I) 6= L(I)].

2



(a) No need for a full proof, but give reasonable intuition to why it is true.

• Answer:

Answer from 2017: The conclusion [∀ DFA M , ∃ an input I, M(I) 6= L(I)] is that there
is no DFA computing L.
Break each string into a first and a last name. Here S is a set of first names with α and
β being examples, while ζ is a last name. After a DFA M reads one of the first names
in S, it must remember precisely which of these it has read. It does this by going into a
different state for each one. Hence, the number of states M has must be at least the size
of |S|, which in this case is infinite.
If, on the other hand, M were confused to whether the first name it read was α or β,
then it would also be confused as to whether the final string is αζ or βζ, where ζ is some
last name. The statement of the claim is that the language L distinguishes between every
pair α, β ∈ S of first names, namely that there is such a ζ such that the language L gives
different answers to αζ and βζ. Hence, M will give the wrong answer to one of these.

Answer from 1999:
Theorem 1 If language L distinguishes the prefixes S, then any DFA that decides L

requires at least |S| states.
The intuition is that after the DFA has read in some prefix in S, it needs enough memory
to remember which one it has seen or equivalently it needs enough states to distinguish
between them.
Corollary 2 If language L distinguishes the prefixes S, where S contains an infinite

number of prefixes, then L is not a regular language, because any DFA deciding it requires

an infinite number of states.

Proof of Theorem ??:

q

γ
β

α

end

prefixq

By way of contradiction, assume that the DFA M decides L and has fewer than |S| states.
For each prefix α ∈ S, run M on it and place it on the state of M at which the machine
ends up. The pigeon hole principle states that you can’t put n+ 1 pigeons into n pigeon
holes without putting more than one pigeon in the same hole. By this principle, there is
a state of M which we will denote qprefix that receives two prefixes α, β ∈ S. Because
the prefixes α and β can be distinguished by L, there exists a postfix ζ such that αζ and
βζ are given different answers by L. I claim that the state qend the M ends on when run
on αζ is the same as when run on βζ. The reason is that after reading α and β, M is in
the same state qprefix and then it continues in the same way from there when reading ζ.
This last state qend is either an accept state or is not. Hence, it cannot give the correct
answer on both input instances αζ and βζ, which have different answers.

(b) For each of these languages, either prove that it is not regular or prove that it is. Give the
intuition.

i. L = {a, b}n#{u, v}(n or (n+1))

ii. L = {a, b}m#{u, v}(n or (n+1))

• Answer: The first is not regular because a DFA would need to count and remember the
number of a or b in order to match it up with the number of u or v.

We have to design the infinite set S of first names. An obvious set of first names would
be S = {a, b}n. But the problem with this is that α = a3 and β = b3 are definitely not
distinguished. It is better to have a smaller set of first names, say S = an.

3



Concern: If α = a3, β = a4, and ζ = u4, then both strings are yeses, namely
L(αζ) = L(a3u3+1) = yes and L(βζ) = L(a4u4 = yes.

Avoiding Concern:
Let S = {a3n | n ≥ 0}.
Note then α and β can’t be one apart like in the concerning example.
Let α = a3i and β = b3j be arbitrary strings in S with i 6= j.
Let ζ = #u3i.
Note L(αζ) = L(a3i#u3i) = yes, because we designed it this way.
We want to prove that L(βζ) = L(a3j#u3i) = no.
In order for this to be a yes, because the number of a’s is 3j, the number of b’s needed would
be 3j or 3j + 1. But the number of b’s we have is 3i. Note that neither 3j or 3j + 1 is equal
to 3i because i and j are different and are integers.
Hence, L(βζ) = L(a3j#u3i) = no.
Hence S is an infinite set of strings distinguished by the language.
Hence no DFA computes L.

Address the Concern:
Let S = {an | n ≥ 0}.
Let α = ai and β = bj be arbitrary strings in S with i 6= j.
Assume without loss of generality that i > j. Let ζ = #ui+1.
Note L(αζ) = L(ai#ui+1) = yes, because we designed it this way.
We want to prove that L(βζ) = L(aj#ui+1) = no.
In order for this to be a yes, because the number of a’s is j, the number of b’s needed would
be j or j + 1. But the number of b’s we have is i+ 1. Not that neither j or j + 1 is equal to
i+ 1 because i > j.
Hence, L(βζ) = L(aj#ui+1) = no.
Hence S is an infinite set of strings distinguished by the language.
Hence no DFA computes L.

The second language L = {a, b}m#{u, v}n or (n+1) is regular because the two blocks are not
linked. A regular expression for it is {a, b}∗#{u, v}∗.

7. For each of these languages, either give a context free grammar for it or argue that it can’t be done.

(a) L = 02m+7 an12m{x, y}s{u, v}3n+6

(b) L = 02n+7 am12m{x, y}s{u, v}3n+6

• Answer: The following is a CFG for the second.
We give non-terminal names to the blocks as follows.
S = 02n+7 am12m{x, y}s{u, v}3n+6

U = {u, v}
T = am12m

X = {x, y}s.
The grammar rules are then as follows.
S ⇒ 00SUUU

S ⇒ 0000000TXUUUUUU

U ⇒ u|v
T ⇒ aT11
T ⇒ ǫ

X ⇒ xX|yX
X ⇒ ǫ

4



The first cannot be expressed by a CFG because the blocks with parameters mnmsn have the
m−m link crossing over the n− n link.

5


