
York University

CSE 2001 Fall 2017 – Assignment 4 of 4
Instructor: Jeff Edmonds

1. Let P = {〈“M”, I〉 | M is a TM that has a state that it never enters on input I }.

(a) Suppose I prove A ≤ B.
By Dec, I mean Computable/Decidable.
By Rec, I mean Recognizable but not Co-Recognizable. By Co-Rec, I mean Co-Recognizable but
not Recognizable.
By Neither, I mean neither Recognizable nor Co-Recognizable.
Circle ALL that are possible.

• If A is decidable then B is: Ans: All Dec Rec Co-Rec Neither

• If A is not co-recognizable then B is: Ans: Rec,None Dec Rec Co-Rec Neither

• If B is recognizable then A is: Ans: Dec,Rec Dec Rec Co-Rec Neither

• If B is not decidable then A is: Ans: All Dec Rec Co-Rec Neither

• If B is Rec and Co-Rec then B is: Ans: Dec Dec Rec Co-Rec Neither

(b) Is the problem P recognizable/acceptable? Either prove it is or argue that it is not.
Is the problem P co-recognizable/acceptable? Either prove it is or argue that it is not.
(7 sentences.)

• Answer: It is co-recognizable but not recognizable. The problem is very similar to ¬Halting.
You could run M on I. If it is no instance then it eventually enters each state at least once.
The first time this happens our algorithm stops and says no. On the other hand, if it is a
yes instance there is a state that is never entered. We could run M for a long time, but we
would never know that we can stop say yes.

(c) Either prove Halting ≤compute P or argue that it is impossible.
Hint: In one case, try having a new character cloop
and the transition function rules δ(qi, cloop) = 〈qi+1, cloop, stay〉.
Hint: In other case, give the chain of consequences that would follow leading to a contradiction.
(We only want No-No,Yes-Yes reductions.)

• Answer: Reducing Halting ≤compute P is impossible.
The short answer worth 50% is that P is like ¬Halting and we know ¬Halting ≤compute

Halting using No-No,Yes-Yes reductions is impossible.
The full mark consequences are as follows.
Such a reduction would prove that if P has an algorithm then so does Halting. But P

does have a co-recognizing algorithm. This would mean that Halting would also have a co-
recognizing algorithm. But because Halting has an recognizing algorithm, it would follow
that Halting is decidable. But we know that this is not true.

(d) Again either prove ¬Halting ≤compute P or argue impossible.

• Answer: Suppose I have an oracle that decides P .
Here is an algorithm that will decide the ¬Halting Problem.
Given an input 〈“M”, I〉,
I construct another TM M ′.
On input I ′, M ′ first loops through each of its states entering each except for its halting
state (same as Ms halting state). This is done by writing a new character cloop on the
tape. The transition function would then state that as long as the head is on this character,
don’t do what current state wants you to do, but simply cycle to the next state. Namely
δ(qi, cloop) = 〈qi+1, cloop, stay〉 and δ(qlast, cloop) =

〈

q〈start M〉, bank, stay
〉

.

1



Next M ′ runs like M on I ′.
I give 〈“M ′”, I〉 to my oracle and if the oracle says “yes”, then I say “yes” and if it says “no”,
then I say “no”.
I prove that my algorithm works as follows.
Suppose M halts on I.
Then we know M ′ enters each of its states on I, because at the beginning it enters each except
the halting state and when it runs like M it enters its halting state.
Then the oracle says “no”.
Then I say “no”.
Hence I gave the correct answer.
Suppose M runs forever on I.
Then M ′ also runs forever and hence never enters its halting state.
Then the oracle says “yes”.
Then I say “yes”.
Again I gave the correct answer.
This proves that if P is decidable, then the Halting Problem is decidable.
However, the Halting Problem is not decidable and hence P is not decidable.

(e) State Rice’s Theorem. Can you directly use it to prove P or ¬P is undecidable?

• Answer: Rice’s theorem says that if P = {“M”| L(M)hassomeproperty}, and both P and
¬P are non-empty, then P is undecideable. This is not helpful here because the definition of
P does not speak at all of L(M).

(f) A Yes/No computational problem P (language) can be viewed as the set of yes instances. Define
what it means for P to be enumerable. Compare and contrast this concept with the “list”
definition of P being countable?
Is the problem P countable? Is itenumerable? Give a one sentence argue.
Is the problem ¬P countable? Is itenumerable?

• Answer: Both being enumerable and being countable require forming a (likely) infinite list
of all the elements in P . The difference is that to be countable an all knowing Goddess could
form the list and to be enumerable a lowly TM must. In particular, P is enumerable if there
is a TM that prints yes instances so that each yes instance is eventually printed. (Note that
if there are an infinite number of such instances then at no point in time are all printed.)
We proved that a problem P is enumerable iff it is recognizable. We stated that ¬P but not
P is recognizable and hence ¬P but not P is enumerable. Both are countable. Each TM
has a finite description and hence any subset of them is countable, meaning the all knowing
Goddess could list them.

2


