
York University

CSE 2001 Fall 2017 – Assignment 3 of 4
Instructor: Jeff Edmonds

1. You are to give me a context free grammar to generate the language of all tuples of tuples and characters
{a, b, c}. For example, 〈a, a, 〈b, c, 〈b〉〉 , a, 〈〉〉. Note that the terminal symbols are the characters ’a’, ’b’,
’c’, ’〈 ’, ’ 〉’, and ’,’. Note the tuples can be of arbitrary lengths. Hint, use the following nonterminal
symbols:

• T to represent a tuple. (The start symbol).

• L to represent a list of tuples and characters {a, b, c}. For example, “a, a, 〈b, c, 〈b〉〉 , a, 〈〉”.

• I to represent one item, namely either one tuple or one character from {a, b, c}.

Be sure that the brackets are formed in matching pairs and that the commas are formed to appear
singly between items.

Demonstrate your grammar by giving a parsing of the string 〈a, 〈〉 , b〉

• Answer:
A tuple is a list with 〈 〉 brackets around it.
T ⇒ 〈L〉

A list is a sequence of items separated by commas. Because a list can be of an arbitrary length and
a grammar rule must be of some constant length, we much describe the concept ”list” recursively.
A list of length one consists of a single item. A longer ”list” consists of a first item, followed by
a comma, followed by a shorter ”list”.
L ⇒ I, L | I

A list could also be an empty list. However, adding the rule L ⇒ ǫ would allow ”a,” to be a list.
One solution is to define a list as L ⇒ L′ | ǫ
where L’ is a list with at least one item.
Here a quicker solution is to restrict ”lists” to having at least one item and to include the rule
T ⇒ 〈〉

An item is either a tuple or a character.
I ⇒ T | a| b| c

Answer:

T

< L >

<I, L >

<I, I, L>

<I, I, I>

<a, T, b>

<a, <>, b>

2. Parsing: If possible, write pseudo code for parsing the following grammar.
S ⇒ A a S

⇒ A b

⇒ A
A parsing can be presented as a little picture of the parse tree or as a tuple as done in the assignment.

• Answer:

algorithm GetS (s, i)

〈pre−cond〉: s is a string of tokens and i is an index that indicates a starting point within s.

1

〈post−cond〉: The output consists of a parsing p of the longest substring s[i], s[i+1], . . . , s[j−1]
of s that starts at index i and is a valid S. The output also includes the index j of the token
that comes immediately after the parsed S .

begin
〈pA, jA〉 = GetA(s, i)
if(s[jA] = ’a’)

〈pS , jS〉 = GetS(s, jA + 1)
return(〈pA a pS〉 , jS)

elseif(s[jA] = ’b’)
return(〈pA b〉 , jA + 1)

else
return(〈pA〉 , jA)

end algorithm

3. Consider alphabets Σ1 = {a, b, c} and Σ2 = {p, q, r, s, t}.

Σ∗

1
consists of all finite strings over Σ1. Similarly Σ∗

2
. We want to determine whether or not Σ∗

1
and

Σ∗

2
have the same size. One way of proving that they do is to set up a bijection between them. This

can be done, but it is tricky.

Clearly |Σ∗

1
| ≤ |Σ∗

2
|. Hence, what remains is to determine whether or not |Σ∗

1
| ≥ |Σ∗

2
|. This is true if

and only if there is a mapping (encoding) f : Σ∗

2
→ Σ∗

1
such that each string in Σ∗

2
is mapped to a

unique string in Σ∗

1
. (It might not be a bijection because some strings in Σ∗

1
might not get mapped

to.) In other words, can you use strings over Σ1 to name all strings over Σ2.

If you think that such mapping exists, explain why and give pseudo code for computing f . If you think
that no such mappings f exists, carefully explain why. Recall that Jeff says that a set is countably-
infinite in size if and only if each element in the set has a unique finite description.

• Answer: The sets Σ∗

1
and Σ∗

2
are the same size. They are both countably infinite. Using Jeff’s

definition, this is because each string in each set has a finite description.

Pseudo code for computing f would go as follows. A string in Σ∗

2
is a string of the characters p,

q, r, s and t. Encode each p with the two letters aa, encode q with ab, r with ac, s with ba, and
t with bb. Concatenating all these codes together gives a unique string in Σ∗

1
.

4. The Halting Problem is Undecidable

(a) Use first order logic to state that problem P is computable. Might the TM mentioned in this
sentence fail to halt on some input?

• Answer: ∃M ∀I P (I) = M(I). For P to be computable/decidable, this M must on each
input halt and give the correct answer.

(b) Suppose I give you as an oracle a Universal Turing Machine. With this extra help, does this
change with whether you can solve the Halting problem?

• Answer: No help. We do have a TM for a Universal Turing Machine. And the Halting
problem is not computable.

(c) Suppose you think it undignified to feed a TM M a description “M” of itself. Instead, of mak-
ing M ’s nemesis be IM = “M”, lets instead define IM = F (M) where F (M) is the descrip-
tion of what the TM M fears the most. For example, F (MSherlock Homes) = “Moriarty” and
F (MSuper Man) = “Kryptonite”.

i. Suppose F (M) is distinct for each TM M , i.e. ∀M,M ′, M 6= M ′ ⇒ F (M) 6= F (M ′). Using
this new nemesis input, give the proof that there is a problem Phard that is uncomputable.
This is done by giving the first order logic statement and then playing the game.
(Six quick sentences, i.e. I removed all the chat from the posted proof.)
If you have memorized the proof in the slides and you put it here unchanged you will get
60%.

2

• Answer: Proving the first order logic statement: ∃Phard ∀M ∃IM M(IM) 6= Phard(IM)
Define problem Phard so that Phard(F (M)) is anything different than M(F (M)).
Let M be an arbitrary TM.
Define input IM to be M ’s nemesis F (M).
We win because M(IM) 6= Phard(IM).
This completes the proof that there is an uncomputable computation problem.

ii. (Bonus Question so no marks for a blank):
Suppose F (M) is not distinct for each TM M , i.e. ∃M,M ′, M 6= M ′ and F (M) = F (M ′).
Suppose we want Phard to be a language, i.e. its output is in {Y es,No}. What does wrong
in your previous proof?

• Answer: Suppose M and M ′ are such that F (M) = F (M ′) = I. We both define
Phard(I) to be anything different than M(I) and anything different than M ′(I). But
what if M(I) = No, M ′(I) = Y es, and Phard(I) must be in {Y es,No}. Then we have a
problem.

3

