York University
CSE 2001 Fall 2017 — Assignment 3 of 4

Instructor: Jeff Edmonds

1. You are to give me a context free grammar to generate the language of all tuples of tuples and characters
{a,b,c}. For example, (a,a, (b, c, (b)) ,a,()). Note that the terminal symbols are the characters ’a’, ’b’,

¢, (", ), and ’,. Note the tuples can be of arbitrary lengths. Hint, use the following nonterminal
symbols:

e T to represent a tuple. (The start symbol).
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e L to represent a list of tuples and characters {a, b, c}. For example, “a,a, (b,c, (b)), a, ()”.

e [ to represent one item, namely either one tuple or one character from {a, b, c}.

Be sure that the brackets are formed in matching pairs and that the commas are formed to appear
singly between items.

Demonstrate your grammar by giving a parsing of the string (a, (), b)

e Answer:
A tuple is a list with { ) brackets around it.
T = (L)
A list is a sequence of items separated by commas. Because a list can be of an arbitrary length and
a grammar rule must be of some constant length, we much describe the concept "list” recursively.
A list of length one consists of a single item. A longer "list” consists of a first item, followed by
a comma, followed by a shorter ”list”.
L=1L|1
A list could also be an empty list. However, adding the rule L = ¢ would allow ”a,” to be a list.
One solution is to define a list as L = L | ¢
where L is a list with at least one item.
Here a quicker solution is to restrict ”lists” to having at least one item and to include the rule

T=
An item is either a tuple or a character.
I=T|alb|c
Answer:
T
< L >
<I, L >
<1, I, L>
<1, I, I>
<a, T, b>

<a, <>, b>
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2. Parsing: If possible, write pseudo code for parsing the following grammar.
S=Aaf

=Ab

= A
A parsing can be presented as a little picture of the parse tree or as a tuple as done in the assignment.

e Answer:
algorithm GetS (s, 1)
(pre—cond): s is a string of tokens and i is an index that indicates a starting point within s.



(post—cond): The output consists of a parsing p of the longest substring s[i], s[i+1],. .., s[j—1]
of s that starts at index 7 and is a valid S. The output also includes the index j of the token
that comes immediately after the parsed S .

begin
(pa,ja) = GetA(s, i)
if( s[ja] ="a")
<p5'7jS> = GetS(s,jA + 1)
return( (pa a ps), js)
elseif( s[ja] =b")
return( (pa b),ja +1)
else
return( (pa),ja)
end algorithm

3. Consider alphabets ¥; = {a,b, ¢} and X3 = {p,q, 1, s,t}.

37 consists of all finite strings over ¥;. Similarly 335. We want to determine whether or not ¥} and
35 have the same size. One way of proving that they do is to set up a bijection between them. This
can be done, but it is tricky.

Clearly |X7| < |X3|. Hence, what remains is to determine whether or not |X5| > |X3|. This is true if
and only if there is a mapping (encoding) f : 35 — 37 such that each string in ¥} is mapped to a
unique string in X3. (It might not be a bijection because some strings in ¥} might not get mapped
to.) In other words, can you use strings over ¥, to name all strings over X,.

If you think that such mapping exists, explain why and give pseudo code for computing f. If you think
that no such mappings f exists, carefully explain why. Recall that Jeff says that a set is countably-
infinite in size if and only if each element in the set has a unique finite description.

o Answer: The sets 37 and X} are the same size. They are both countably infinite. Using Jeft’s
definition, this is because each string in each set has a finite description.
Pseudo code for computing f would go as follows. A string in X3 is a string of the characters p,
q, r, s and t. Encode each p with the two letters aa, encode ¢ with ab, r with ac, s with ba, and
t with bb. Concatenating all these codes together gives a unique string in ¥7.

4. The Halting Problem is Undecidable

(a) Use first order logic to state that problem P is computable. Might the TM mentioned in this
sentence fail to halt on some input?

e Answer: IM VI P(I) = M(I). For P to be computable/decidable, this M must on each
input halt and give the correct answer.

(b) Suppose I give you as an oracle a Universal Turing Machine. With this extra help, does this
change with whether you can solve the Halting problem?

e Answer: No help. We do have a TM for a Universal Turing Machine. And the Halting
problem is not computable.

(¢) Suppose you think it undignified to feed a TM M a description “M” of itself. Instead, of mak-
ing M’s nemesis be Iy = “M”, lets instead define Iy, = F(M) where F(M) is the descrip-
tion of what the TM M fears the most. For example, F(Mgheriock Homes) = “Moriarty” and

o«

F(Mguper man) = “Kryptonite”.

i. Suppose F(M) is distinct for each TM M, i.e. VM, M', M # M' = F(M) # F(M'). Using
this new nemesis input, give the proof that there is a problem Pjq.q that is uncomputable.
This is done by giving the first order logic statement and then playing the game.

(Six quick sentences, i.e. I removed all the chat from the posted proof.)

If you have memorized the proof in the slides and you put it here unchanged you will get
60%.



e Answer: Proving the first order logic statement: 3Pyqrq VM 3Ing M (Ing) # Prara(Ing)
Define problem Pjg.q so that Pharq(F(M)) is anything different than M (F(M)).
Let M be an arbitrary TM.
Define input Ips to be M’s nemesis F(M).
We win because M (Ipr) # Prara(Inr)-
This completes the proof that there is an uncomputable computation problem.

ii. (Bonus Question so no marks for a blank):
Suppose F(M) is not distinct for each TM M, i.e. IM, M', M # M’ and F(M) = F(M').
Suppose we want Prq-q to be a language, i.e. its output is in {Yes, No}. What does wrong
in your previous proof?
e Answer: Suppose M and M’ are such that F(M) = F(M') = I. We both define
Phara(I) to be anything different than M (I) and anything different than M’(I). But
what if M(I) = No, M'(I) = Yes, and Pparq(I) must be in {Yes, No}. Then we have a
problem.



