
York University

CSE 2001 Fall 2017 – Assignment 2 of 4
Instructor: Jeff Edmonds

1. Program to DFA:

Note in binary if x = 1012 = 5 and y = 10112 = 11 then y = 2 · x+ 1.
Remember x mod 3 = 2 is the remainder when you divide x by 3.
Consider the following program:

q = 0
loop until no more characters

get(c) % c ∈ {0, 1}
q = (2 · q + c) mod 3 % q ∈ {0, 1, 2}

end loop
if q = 0 then

return(“accept”)
else

return(“reject”)
end if

(a) Describe this language in one easy to understand English sentence.
Hint: Look at examples in slides.

• Answer: L = {α ∈ {0, 1}∗ | xα is divisible by three, where xα is the integer obtained when
thinking of α in binary. }.

(b) Convert the program into a DFA.

• Answer:

0
0

1

1

1
0

q=1

q=2

q=0

(c) Convert the DFA into a regular expression.

• Answer: Add an ǫ transition from a new start state to q = 0 and another from the accept
state q=0 to the new accept state.
Ripping out state q=2 gives a self loop on state q=1 labeled 01∗0.
Ripping out state q=1 gives a self loop on state q=0 labeled 0 ∪ 1(01∗0)∗1.
Ripping out state q=0 gives the final answer [0 ∪ 1(01∗0)∗1]∗.

2. NFA:

Let L1 and L2 be arbitrary languages and let M1 and M2 below be diagrams representing the NFA for
them.

(a) Explain (as if to a 1030 student) the key differences between the languages L∗
1∪L∗

2 and (L1∪L2)
∗.

Give an example of a string that is in one but not in the other and vice versa.

• Answer in Notes: Let L1 = {a} and L1 = {b}. (L∗
1 ∪ L∗

2) contains strings that either only
contain a’s or only contain b’s. On the other hand, (L1 ∪ L2)

∗ contains strings that contains
only a’s and b’s. Let ω = ab. It is in the second and but not the first. Everything in the first
is in the second.

1

(b) Draw an NFA for the language L∗
1 ∪ L∗

2 for this generic L1 and L2.
(Do not do it for simply L1 = {a} and L1 = {b}.)
(c) Draw an NFA for the language (L1 ∪ L2)

∗.

• Answer:

L2
**

1L U

1M

ε

ε

ε
ε

ε

ε

ε

ε

ε

a

b

2M

a

b

L2L1 U
*()

1M
ε

ε

ε

ε

ε

ε
ε

ε

ε

ε

a

b

2M

a

b

(d) Explain (as if to a 1030 student) the key differences between the structures of your L∗
1 ∪ L∗

2 and
(L1 ∪ L2)

∗ NFAs and why these differences cause the difference in the languages accepted. Hint:
Describe how clones can travel through the machines. Use the word “commit”.

• Answer: In both machines there is a state that has one epsilon edge to the start of one
M1 and another to that of M2. Any clone on this state must choose which machine to enter.
However, in the machine for L∗

1 ∪ L∗
2 this is a bigger commitment than it is in the machine

for (L1 ∪ L2)
∗. In the second, the clone can later switch to the other machine; however, in

the first, the clone must stick forever with the machine first chosen.
In both machines there are epsilon edges from all the accept states of M1 and of M2 back
the beginning so that the machine can be traversed again. (In my figure, to make the figure
easier, I had these edges collect together before going back. This is not necessary.) In the
machine for L∗

1 ∪L∗
2, these go back to the start state of the same M1 or M2 so that the same

one must be traversed again. In contrast, in the machine for (L1 ∪ L2)
∗, these edges go back

before the choice between M1 and M2 so that the clone again has a choice of whether to enter
M1 or M2.
In the L∗ NFA construction, the start state must be an accept state so that the NFA accepts
the empty string. However, we don’t want to make the first state ofM1 an accept state because
that might change the workings of this machine. To accomplish this, the construction adds a
new start state.

3. Consider the following NFA.

2’’

a

a2’b

ε
ε1

2 3
4

a,b

b

εε

a

a

b

b

Our goal is to explain in words the language L(M) accepted by this NFA
and then to prove by loop invariants (induction) that L(M) = L.

Goal: Prove L(M) = L by proving ∀qi,M(qi) = L(qi).

The Machine and its Labeled Paths: M(qi) = {α with path to state qi}.
i.e. it is just the definition of L(Mi) for the NFA Mi where qi is the only accept state.

The Language and Properties of its Strings: L(qi) = {α with some property}.

2

Suppose the DFA machine has read in the substring “abbaaa” so far. What do you want it to be
remembering about this substring? What does Pooh write on his black board? What is the common
property of the strings (including this one) that you want to arrive at this state? We will denote the
set of strings with this property as L(q3). Effectively, what is the “meaningful name” you are giving
to this state?

(a) For each state qi, we guessed what that set M(qi) would be with a Name L(qi).
Hint: Split state q2 as done into two states q′2 and q′′2 and note that this does not change the
language.
Hint: Also define the languages L(q′′2 to q′′2) and L(q′′2 to q3) in which the start state is q′′2 and
accept state is either q′′2 or q3.

• Answer:

– L(q0) = “empty string”.

– L(q1) = “any string”.

– L(q′2) = “ends in a b or is empty”.

– L(q′′2 to q′′2) = a block of a’s of (zero or) even length”.

– L(q′′2 to q3) = a block of a’s of odd length”.

– L(q2) = “ends in a block of a’s of (zero or) even length”.

– L(q3) = “ends in a block of a’s of odd length”.

– L(q4) = “ends in a non-zero block of b’s and the previous block of a’s has odd length”.

(b) Define the language L(M) accepted by machine M in terms of these state languages M(qi).
In doing so, determine in words what language is accepted by this NFA.

• Answer:
L(M) =

⋃
accept states qi

L(qi)
= L(q3) ∪ L(q4)
= “ends in a block of a’s of odd length”

∪ “ends in a non-zero block of b’s and the previous block of a’s has odd length”
= “The last non-empty block of a’s (it might have b’s after it) must have odd length.”

2’’

a

a2’b

ε
ε1

2 3
4

a,b

b

εε

a

a

b

b

(c) Write an extended regular expression that expresses the same language.
Do not do any long conversion.

• Answer: ({a, b}∗b ∪ ǫ) a(aa)∗ b∗

(d) Our goal is to prove that ∀i,M(qi) = L(qi).
Our loop invariant after having read t characters will be

LIt = “∀i, ∀α of length t, α ∈ M(qi) iff α ∈ L(qi)”.
Assume LIt. Consider an arbitrary string αc with length t+1.
You must prove αc ∈ M(q2) iff αc ∈ L(q2)

• Answer:

αc ∈ M(q2) (by defn of M(q2))
iff αc has path of length t+1 to q2 (by edges in M into q2)
iff α has path of length t (to q1 and c = b) or (to q3 and c = a) (by defn of M(qi))
iff (α ∈ M(q1) and c = b) or (α ∈ M(q3) and c = a) (by LIt)
iff (α ∈ L(q1) and c = b) or (α ∈ L(q3) and c = a) (by defn of L(qi))
iff (α is “any string” and c = b) or (α “ends in a block of a’s of odd length” and c = a)
iff αc is “any string ending in a b” or “ends in a non-zero block of a’s of even length”
iff αc “ends in a zero block of a’s” or “ends in a non-zero block of a’s of even length”
iff αc “ends in a block of a’s of (zero or) even length” (by defn of L(q2))
iff αc ∈ L(q2)

3

(e) State the general required connections that must be true about these guessed sets L(qi)?
For each state, state the required connection with respect to L(qi).
Argue that this condition is in fact true.

• Answer:
The general required connections on L(qi) are

∀i, L(qi) =
⋃

〈qj ,qi,c〉
L(qj) · c.

q0: Consider state q0. It does not have any actual edges into it. But you can sort of imagine
that being the start state is kind of like having an edge into it labeled ǫ from the universe.
The required condition is that

L(q1) = L(quniverse) · ǫ ∪
⋃

no edges = {ǫ}.

q1: Consider state q1 with an edge labeled ǫ from q0 and an edge labeled a and b from q1.
The required condition is that

L(q1) = L(q0) · ǫ ∪ L(q1) · {a, b}.
Proof that this is true:

L(q1) = “any string”

= {ǫ} ∪ “any string” · {a, b}

= L(q0) · ǫ ∪ L(q1) · {a, b}.

q2: Consider state q2 with an edge labeled ǫ from q0, an edge labeled b from q1, and an edge
labeled a from q3. The required condition is that

L(q1) = L(q0) · ǫ ∪ L(q1) · b ∪ L(q3) · a.
Proof that this is true:

L(q1) = “ends in a block of a’s of (zero or) even length”

= “does not end in a” ∪ “ends in a nonzero block of a’s of even length”

= (“empty string” ∪ “any string” · b) ∪ “ends in a block of a’s of odd length” · a

= L(q0) · ǫ ∪ L(q1) · b ∪ L(q3) · a

q3: Consider state q3 with an edge labeled a from q2. The required condition is that
L(q1) = L(q2) · a.

Proof that this is true:

L(q1) = “ends in a block of a’s of odd length”

= “ends in a block of a’s of (zero or) even length” · a

= L(q2) · a

q4: Consider state q4 with an edge labeled b from q3 and from q4. The required condition is
that

L(q4) = L(q3) · b ∪ L(q4) · b.
Proof that this is true:

L(q4) = “ends in a non-zero block of b’s and the previous block of a’s has odd length”

= “ends in a block of a’s of odd length” · b

∪ “ends in a non-zero block of b’s and the previous block of a’s has odd length” · b

= L(q3) · b ∪ L(q4) · b

(f) Use loop invariants (induction) and these verified required conditions to prove the machine M

computes the stated language, i.e. M(L) = L.

• Answer:

i. Loop Invariant:

Our goal is to prove that ∀i,M(qi) = L(qi).
Our loop invariant after having read t characters will be

LIt = “∀i, ∀α of length t, α ∈ M(qi) iff α ∈ L(qi)”.

ii. Establishing the Loop Invariant: Prove LI0.
Namely, we must prove that “∀iM(qi) = L(qi) is correct for the empty string ǫ.

4

For the start state q0, both M(q0) and L(q0) contain the empty string ǫ.
But for the other states, they do not.

iii. Maintain the Loop Invariant: Assume LIt and prove LIt+1

Namely, we must prove that “∀i, ∀αc of length t+ 1, αc ∈ M(qi) iff αc ∈ L(qi)”.
To do this, consider some state qi and an arbitrary string αc with length t+1.
You must prove αc ∈ M(qi) iff αc ∈ L(qi)
αc ∈ M(qi)

iff αc has path of length t+1 to qi
iff α has path of length t to qj for some edge 〈qj , qi, c〉 (from qj to qi labeled c).
(by LIt) α has path to qj iff α ∈ L(qj).
Unioning these possibilities gives

iff α ∈
⋃

〈qj ,qi,c〉
L(qj).

iff αc ∈
⋃

〈qj ,qi,c〉
L(qj) · c = L(qi).

iv. Obtaining the Post Condition:

Define the language L(M) accepted by machine M in terms of these state languages
M(qi). In so doing prove that L(M) = L.
Done above.

2’’

a

a2’b

ε
ε1

2 3
4

a,b

b

εε

a

a

b

b

(g) Without doing the conversion, design a DFA for this language. Label the states with meaningful
names.
Hint: The loop invariant states that what is remembered about the prefix read so far is:
- whether we are working on a block of a’s or a block of b’s.
- whether the last block of a’s has even or odd length.
This implies there are four states.
You don’t need to, but my DFA collapses two of these states into one.

• Answer: See answer below.

(h) Do the steps with the table to convert this NFA into a DFA.

• Answer:

{1,2,4}

b

{1,3}{1,2}

b

b

a

a

a

1
2
3
4

{1}
{3}
{2}
{}

{1,2}
{}

{4}
{4}

a b

Leng of ’a’
block is even
Leng of last ’a’

block is odd
(or empty)

& still ’a’ & now ’b’

4. Do one step of converting this NFA into a regular expression by ripping out state 2.

Answer:

5

44 30 1ε10 ε

3

2

u U aq*x

Rip 2

ε

aq*

v
w

w U aq*b

q

x

v
u

ε

ε
b

a

6

