
York University

CSE 2001 – Unit 3.1 DFA Classes

Converting between DFA, NFA, Regular Expressions, and

Extended Regular Expressions
Instructor: Jeff Edmonds

Read Jeff’s notes. Read the book. Go to class. Ask lots of question. Study the slides. Work hard on solving
these questions on your own. Talk to your friends about it. Talk to Jeff about it. Only after this should
you read the posted solutions. Study the solutions. Understand the solutions. Memorize the solutions. The
questions on the tests will be different. But the answers will be surprisingly close.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why
it is not true.

(a) Every DFA M can be converted into an equivalent NFA M ′ for which L(M) = L(M ′).

(b) Every NFA M can be converted into an equivalent DFA M ′ for which L(M) = L(M ′).

(c) Every DFA M can be converted into an equivalent TM M ′ for which L(M) = L(M ′).

(d) Every TM M can be converted into an equivalent DFA M ′ for which L(M) = L(M ′).

(e) Every regular expression R can be converted into an equivalent NFA M for which L(R) = L(M).

(f) Every DFA M can be converted into an equivalent regular expression R for which L(M) = L(R).

(g) Every NFA M can be converted into an equivalent one M ′ that has a single accept state.

(h) The set of languages computed by DFA is closed under complement.

(i) The set of languages computed by NFA is closed under complement.

2. Closure: Consider the automata from the last assignment.

2 31 0 0

0,1

0

1
1 1

0

0

(a) Construct an NFA for the language L1 ∪ L2. Use the technique done in class that combines the
above two machines. Do not simplify the machine produced.

(b) Similarly, construct an NFA for the language (L2)
∗.

(c) Suppose you are a DFA. You have an NFA M that accepts L and an input string ω. In your own
words, what are the ideas behind simulating M on ω? What states to you need?

3. Consider the NFA M :

0

2-12-0

3-0

3-1

3-2

0

0

0

0

0

ε

ε

1

(a) Give the language L(M).

(b) Convert this NFA into a DFA. Giving the table, the DFA M ′, and the simplified DFA.

(c) Make a DFA M ′′ for the following language L′′ = {w ∈ {0}∗ | |w| is 0, 2, 3, or 4 mod 6}.

(d) Is there a connection between M ′ and M ′′? Why? (If you are in the mood, see references for the
Chinese Remainder Theorem of number theory.)

4. Construct an NFA for the following language (bb ∪ aba)∗(aa ∪ ba)∗.

5. Use the Bumping Lemma to prove that the following is not regular.
L = {anbamban+m | n,m ≥ 0}

6. Algorithms: Describe in a few sentences the outline of an algorithm to solve each of the following
computational problems involving DFA and NFA.

(a) Given an NFA M , does it accept any string or is it the case that L(M) = ∅.

(b) The symmetric difference of two languages is defined to be L1 ⊕ L2 = (L1 ∩ L2) ∪ (L2 ∩ L1). It
consists of those strings for which these languages give different answers.

Given two DFA M1 = 〈Q1,Σ, δ1, s1, F1〉 and M2 = 〈Q2,Σ, δ2, s2, F2〉, construct a DFA M =
〈Q,Σ, δ, s, F 〉. Then formally prove as done in class that L(M) = L(M1) ⊕ L(M2), i.e. that for
every string α, α ∈ L(M) if and only if α ∈ L(M1)⊕ L(M2).

(c) Given two NFA M1 and M2, determine whether L(M1) = L(M2).

(d) Given an NFA M , determine whether L(M) = {ω | ω contains 0101 as a substring }.

(e) Given an NFA M , determine whether L(M) = {0n1n | n ≥ 0}.

7. Let L be a language of strings from {0, 1}∗.
We say that the strings α and β are distinguished by L if there exists a γ such that L(αγ) 6= L(βγ).
Don’t try to prove it, but what did we say in class that this says about any DFA computing L?

Give a first order logic statement that states that the strings α and β are not distinguished by L.
Don’t try to prove it, but what did we say in class that this says about any DFA computing L?

Our L happens distinguish between every pair of strings in the set S = {0100, 1001, 0010}. On the
other hand, L does not distinguish between the strings ǫ, 0100, 01000, 10011, 00100. Neither does it
distinguish between 1001, 01001. Neither does it distinguish between 0010, 10010, 00101. The string
11111 happens to be accepted in L, but strings 00000 and 10010 are rejected.

Surprisingly enough, this is enough information about the language L to completely determine what
answer it gives for every binary string. More over, this specified language is regular and has a very
simple DFA. With a small change, this is proved in Eric’s email to me in my 2001 course notes. You
do not need to read or understand this proof unless you want.

All you need to do is to use the above information to figure out what this DFA must look like.

8. The operation of shuffle is important in the theory of concurrent systems. If x, y ∈ Σ∗, we write x ‖ y

for the set of all strings that can be obtained by shuffling strings x and y together like a deck of cards;
for example

ab ‖ cd = {abcd, acbd, acdb, cabd, cadb, cdab}.

The set x ‖ y can be defined by induction:

ǫ ‖ y = {y},

x ‖ ǫ = {x},

xa ‖ yb = (x ‖ yb){a} ∪ (xa ‖ y){b}.

2

The shuffle L1 ‖ L2 of two languages L1 and L2 is the set of all strings obtained by shuffling a string
from L1 with a string from L2:

L1 ‖ L2 = ∪x∈L1,y∈L2
x ‖ y

For example,

{ab} ‖ {cd, e} = {abe, aeb, eab, abcd, acbd, acdb, cabd, cadb, cdab}.

Show that if L1 and L2 are regular languages then so is L1 ‖ L2. Do this by describing a general
method of constructing an NFA M‖ for L1 ‖ L2 out of DFA M1 for L1 and M2 for L2.

Hint: Given a string γ, we must decide whether or not it is a shuffle of a string α from L1 and one β

from L2. Given we are building an NFA, we do have a Fairy Godmother to help us. She can tell us
for each letter of γ whether it is in α or in β. Then knowing α and β, we can use M1 and M2 to see
whether or not α is from L1 and β is from L2. We accept γ if this the case. On the other hand, we have
to run M1 and M2 in parallel just as we did when we computed L1 ∩ L2. Towards this goal, imagine
putting a pebble on a state of M1 and another on one of M2. Guess nondeterministically which pebble
to move. Accept if in the end both pebbles occupy accept states.

(a) Now assume M1 and M2 are arbitrary DFA. Describe how you would construct the NFA M‖.

(b) Let M1 be the DFA along the left and M2 be that along the top. The NFA M‖ for L1 ‖ L2 will
have the matrix of states as shown. Indicate the start state and the accept states and add all the
transition edges.

0 11

Even

Odd

0

0,1
0,1

leng 2
0,1

leng 1
0,1

leng 0 leng >2

9. Let L be a regular languages over an alphabet Σ. Consider the language

MIDTHIRDS(L) = {y ∈ Σ∗ | ∃x, z ∈ Σ∗, |x| = |y| = |z| and xyz ∈ L}

Like 0n1n, one likely would first guess that a DFA for this language would have to count the length
and x, y, and z and hence this language would not be regular. But note that only y is a part of the
input. Your task is to prove that MIDTHIRDS(L) is also regular.

Hint: Let M be a DFA that computes L. We construct an NFA M ′ for MIDTHIRDS(L) as follows.
Imagine M ′ having five fingers on states of M . This will give M ′ states

〈

q〈start,y〉, q〈start,z〉, qx, qy, qz
〉

where each of these q are states of M . Assuming y is a yes instance, these fingers together trace out
the path pxyz that the computation on M follows given input xyz.
A common phenomena of nondeterminism is that the Fairy Godmother provides you with some crucial
information that alone you could not obtain and then your job at the end is to verify that what she
said is actually true.

Informally, describe what each of the five fingers does as M ′ reads its input y.
What is the start state of M ′?
Describe the edges of M ′, i.e. from some state

〈

q〈start,y〉, q〈start,z〉, qx, qy, qz
〉

when reading character

cy, the Fairy Godmother can choose to transition to state
〈

q′〈start,y〉, q
′
〈start,z〉, q

′
x, q

′
y, q

′
z

〉

.

What are the accept states of M ′.

3

How many states does M ′ have?
There is no need to prove your construction correct.

10. For each integer r, consider the NFA Mr depicted below.

a,b a,ba,ba a,b
a,b

... ...
a,b a,ba,b

q
0

q
*

q
1

q
2

q
3

q
r R

(a) Let the input string be of the form α = xay, where x, y ∈ {a, b}∗ are strings and the specified
character a is read as the computation follows this edge from q∗ to q0. What are the requirements
on the substrings x and y for this α to be accepted. Namely, the language computed by Mr is
Lr = {xay ∈ {a, b} | where ?? something about x and y ?? }.

(b) Lets index the input characters backwards, namely α = αnαn−1 . . . α2α1α0. Here αn is the first
character read by the NFA and α0 is the last. What are the requirements on the characters αi

for this α to be accepted. Namely, the language computed by Mr is
Lr = {α ∈ {a, b} | where ?? something about αi ?? }.

(c) Using the concepts from that previous two question, explain accepting computations on this NFA
Mr.

(d) Give a regular expression Rr representing this language Lr.

(e) Now focus on the NFA MR where the accept state is qR. Let M ′
R denote the DFA obtained by

converting this NFA MR into a DFA as described in class. But recall the process of converting.
After reading a string α, we put a clone on each state of MR that the computation could be in,
depending on which nondeterministic steps the computation took. Let Q ⊆ [q0, q1, . . . , qR] be an
arbitrary subset of these states. Describe a string denoted αQ such that after reading it there is
a clone on state q0 and one each of the states specified in Q, but on no other states.

(f) How many states do you think the resulting DFA M ′
R would have?

(g) Let qQ denote the state that the resulting DFA M ′
R is in when in the NFA MR there is a clone

on state q∗ and one each of the states specified in Q, but on no other states. After reading the
character b, which state will M ′

R be in? And after reading an a? Use Q = {5, 18, 21} as an
example.
Hint: Let Q+1 denote the set where each state in Q is incremented by one, i.e. Q+1 = {6, 19, 22}.

(h) Now forget about the machines MR and M ′
R and let us focus on the language LR. We will now

set up the Bumping Lemma for this language. Let S = {αQ | Q ⊆ [0, 1, . . . , R]} be a set of
distinguished first names. Here string αQ is the string you defined in an earlier question. Recall
the adversary chooses two different strings αQ and αQ′ ∈ S. Your task is to find a ζ ∈ {a, b}∗

such that LR(αQζ) 6= LR(αQ′ζ).

(i) What does this distinguished set S and the Bumping lemma tell us about the number of states
in any DFA that solves LR.

(j) Can you make any conclusions from this?

4

