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Abstract

We prove the existence of small core-sets for solv-
ing approximate k-center clustering and related prob-
lems. The size of these core-sets is considerably
smaller than the previously known bounds, and im-
ply faster algorithms; in particular, we get an algo-
rithm needing O(dn/ε + (1/ε)5) time to compute an
ε-approximate minimum enclosing ball (1-center) of n
points in d dimensions. We also give a simple gradient-
descent algorithm for computing the minimum enclos-
ing ball in O(dn/ε2) time. This algorithm also implies
slightly faster algorithms for computing approximately
the smallest radius k-flat of a given set of points.

1 Introduction

Given a set of points P ⊂ Rd and value ε > 0, a core-set
S ⊂ P has the property that the smallest ball contain-
ing S is within ε of the smallest ball containing P . That
is, if the smallest ball containing S is expanded by 1+ε,
then the expanded ball contains P . It is a surprising fact
that for any given ε there is a core-set whose size is in-
dependent of d, depending only on ε. This is was shown
by Bădoiu et al.[BHI], where applications to clustering
were found, and the results have been extended to k-flat
clustering.[HV].

While the previous result was that a core-set has size
O(1/ε2), where the constant hidden in the O-notation
was at least 64, here we show that there are core-sets of
size at most 2/ε. This is not so far from a lower bound
of 1/ε, which is easily shown by considering a regular
simplex in 1/ε dimensions. Such a bound is of particular
interest for k-center clustering, where the core-set size
appears as an exponent of n in the running time.

Our proof is a simple effective construction. We also
give a simple algorithm for computing smallest balls,
that looks something like gradient descent; this algo-
rithm serves to prove a core-set bound, and can also
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be used to prove a somewhat better core-set bound for
k-flats. Also, by combining this algorithm with the con-
struction of the core-sets, we can compute a 1-center in
time O(dn/ε + (1/ε)5).

In the next section, we prove the core-set bound for
1-centers, and then describe the gradient-descent algo-
rithm. In the conclusion, we state the resulting bound
for the general k-center problem.

2 Core-sets for 1-centers

Given a ball B, let cB and rB denote its center and
radius, respectively. Let B(P ) denote the 1-center of
P , the smallest ball containing it.

We restate the following lemma, proved in [GIV]:

Lemma 2.1 If B(P ) is the minimum enclosing ball of
P ⊂ Rd, then any closed half-space that contains the
center cB(P ) also contains a point of P that is at dis-
tance rB(P ) from cB(P ).

Theorem 2.2 There exists a set S ⊆ P of size 2/ε
such that the distance between cB(S) and any point p of
P is at most (1 + ε)rB(P ).

Proof: We proceed in the same manner as in [BHI]: we
start with an arbitrary point p ∈ P and set S0 = {p}.
Let ri ≡ rB(Si) and ci ≡ cB(Si). Take the point q ∈ P
which is furthest away from ci and add it to the set:
Si+1 ← Si

⋃
{q}. Repeat this step 2/ε times.

Let c ≡ cB(P ), R ≡ rB(P ), λi ≡ ri/R, di ≡ ||c − ci||
and Ki ≡ ||ci+1− ci||. Since the radius of the minimum
enclosing ball is R, there is at least one point q ∈ P such
that ||q − ci|| ≥ R. If Ki = 0 then we are done, since
the maximum distance from ci to any point is at most
R. If Ki > 0, let H be the hyperplane that contains
ci and is orthogonal to (ci, ci+1). Let H+ be the closed
half-space bounded by H that does not contain ci+1. By
Lemma Lemma 2.1, there must be a point p ∈ Si

⋂
H+

such that ||ci − p|| = ri = λiR, and so ||ci+1 − p|| ≥√
λ2

i R
2 + K2

i . Therefore,
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We want a lower bound on λi+1 that depends only on
λi. Observe that the bound on λi+1 is smallest with
respect to Ki when

R−Ki =
√

λ2
i R
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Using (1) we get that

λi+1 ≥
R− (1−λ2

i )R
2

R
=

1 + λ2
i

2
(2)

Substituting γi = 1
1−λi

in the recurrence (2), we get
γi+1 = γi

1−1/(2γi)
= γi(1 + 1

2γi
+ 1

4γ2
i

. . .) ≥ γi + 1/2.
Since λ0 = 0, we have γ0 = 1, so γi ≥ 1 + i/2 and
λi ≥ 1 − 1

1+i/2 . That is, to get λi > 1 − ε, it’s enough
that 1 + i/2 ≥ 1/ε, or enough that i ≥ 2/ε.

3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary
point c1 ∈ P . Repeat the following step 1/ε2 times: at
step i find the point p ∈ P farthest away from ci, and
move toward p as follows: ci+1 ← ci + (p− ci) 1

i+1 .

Claim 3.1 If B(P ) is the 1-center of P with center
cB(P ) and radius rB(P ), then ||cB(P ) − ci|| ≤ rB(P )/

√
i

for all i.

Proof: Proof by induction: Let c ≡ cB(P ). Since we
pick c1 from P , we have that ||c − c1|| ≤ R ≡ rB(P ).
Assume that ||c − ci|| ≤ R/

√
i. If c = ci then in step i

we move away from c by at most R/(i+1) ≤ R/
√

i + 1,
so in that case ||c−ci+1|| ≤ R/

√
i + 1. Otherwise, let H

be the hyperplane orthogonal to (c, ci) which contains
c. Let H+ be the closed half-space bounded by H that
does not contain ci and let H− = R \ H+. Note that
the furthest point from ci in B(P )

⋂
H− is at distance

less than
√
||ci − c||2 + R2 and we can conclude that for

every point q ∈ P
⋂

H−, ||ci − q|| <
√
||ci − c||2 + R2.

By Lemma 2.1 there exists a point q ∈ P
⋂

H+ such
that ||ci − q|| ≥

√
||ci − c||2 + R2. This implies that

p ∈ P
⋂

H+. We have two cases to consider:

• if ci+1 ∈ H+, by moving ci towards c we only in-
crease ||ci+1 − c||, and as noted before if ci = c we
have ||ci+1 − c|| ≤ R/(i + 1) ≤ R/

√
i + 1. Thus,

||ci+1 − c|| ≤ R/
√

i + 1

• if ci+1 ∈ H−, by moving ci as far away from c
and p on the sphere as close as possible to H−, we

only increase ||ci+1 − c||. But in this case, (c, ci+1)
is orthogonal to (ci, p) and we have ||ci+1 − c|| =

R2/
√

i

R
√

1+1/i
= R/

√
i + 1.

4 Conclusions
In this paper we showed the existence of small core-sets
for solving k-center clustering. The new bounds are
not only asymptotically smaller but also the constant is
much smaller that the previous results. These results
combined with the techniques from [BHI] and [HV] al-
low us to get faster algorithms for the k-center problem
and j-approximate k-flat respectively. We can solve the
k-center problem in 2O((k log k)/ε)dn while the previous
bound was 2O((k log k)/ε2)dn. Also, the running time for
computing j-approximate k-flat (with or without out-
liers) is dnO(kj/ε5), while the previous known bound was
dnO(kj/ε5 log 1

ε ). By combining the two algorithms above
we get an O(dn/ε + (1/ε)5) time algorithm for comput-
ing 1-center which is faster than the previously fastest
algorithm, with running time O(dn/ε2 +(1/ε)10 log 1

ε ).
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