
Geometric Approximation via Coresets∗

Pankaj K. Agarwal† Sariel Har-Peled‡ Kasturi R. Varadarajan§

February 22, 2005

Abstract

The paradigm of coresets has recently emerged as a powerful tool for efficiently approximating
various extent measures of a point set P . Using this paradigm, one quickly computes a small
subset Q of P , called a coreset, that approximates the original set P and and then solves the
problem on Q using a relatively inefficient algorithm. The solution for Q is then translated to
an approximate solution to the original point set P . This paper describes the ways in which this
paradigm has been successfully applied to various optimization and extent measure problems.

1 Introduction

One of the classical techniques in developing approximation algorithms is the extraction of “small”
amount of “most relevant” information from the given data, and performing the computation on
this extracted data. Examples of the use of this technique in a geometric context include random
sampling [Cha01, Mul94], convex approximation [Dud74, BI76], surface simplification [HG97], fea-
ture extraction and shape descriptors [DM98, dFM01]. For geometric problems where the input is
a set of points, the question reduces to finding a small subset (i.e., coreset) of the points, such that
one can perform the desired computation on the coreset.

As a concrete example, consider the problem of computing the diameter of a point set. Here it is
clear that, in the worst case, classical sampling techniques like ε-approximation and ε-net would fail
to compute a subset of points that contain a good approximation to the diameter [VC71, HW87].
While in this problem it is clear that convex approximation (i.e., an approximation of the convex
hull of the point set) is helpful and provides us with the desired coreset, convex approximation of
the point set is not useful for computing the narrowest annulus containing a point set in the plane.

In this paper, we describe several recent results which employ the idea of coresets to develop
efficient approximation algorithms for various geometric problems. In particular, motivated by
a variety applications, considerable work has been done on measuring various descriptors of the
extent of a set P of n points in Rd. We refer to such measures as extent measures of P . Roughly

∗Research by the first author is supported by NSF under grants CCR-00-86013, EIA-98-70724, EIA-01-31905, and
CCR-02-04118, and by a grant from the U.S.–Israel Binational Science Foundation. Research by the second author
is supported by NSF CAREER award CCR-0132901. Research by the third author is supported by NSF CAREER
award CCR-0237431

†Department of Computer Science, Box 90129, Duke University, Durham NC 27708-0129; pankaj@cs.duke.edu;
http://www.cs.duke.edu/~pankaj/

‡Department of Computer Science, DCL 2111; University of Illinois; 1304 West Springfield Ave., Urbana, IL
61801; sariel@uiuc.edu; http://www.uiuc.edu/~sariel/

§Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419; kvaradar@cs.uiowa.edu;
http://www.cs.uiowa.edu/~kvaradar/

1

speaking, an extent measure of P either computes certain statistics of P itself or of a (possibly
nonconvex) geometric shape (e.g. sphere, box, cylinder, etc.) enclosing P . Examples of the former
include computing the kth largest distance between pairs of points in P , and the examples of the
latter include computing the smallest radius of a sphere (or cylinder), the minimum volume (or
surface area) of a box, and the smallest width of a slab (or a spherical or cylindrical shell) that
contain P . There has also been some recent work on maintaining extent measures of a set of moving
points [AGHV01].

Shape fitting, a fundamental problem in computational geometry, computer vision, machine
learning, data mining, and many other areas, is closely related to computing extent measures. A
widely used shape-fitting problem asks for finding a shape that best fits P under some “fitting” crite-
rion. A typical criterion for measuring how well a shape γ fits P , denoted as µ(P, γ), is the maximum
distance between a point of P and its nearest point on γ, i.e., µ(P, γ) = maxp∈P minq∈γ ‖p− q‖.
Then one can define the extent measure of P to be µ(P) = minγ µ(P, γ), where the minimum is
taken over a family of shapes (such as points, lines, hyperplanes, spheres, etc.). For example, the
problem of finding the minimum radius sphere (resp. cylinder) enclosing P is the same as finding
the point (resp. line) that fits P best, and the problem of finding the smallest width slab (resp.
spherical shell, cylindrical shell)1 is the same as finding the hyperplane (resp. sphere, cylinder) that
fits P best.

The exact algorithms for computing extent measures are generally expensive, e.g., the best
known algorithms for computing the smallest volume bounding box containing P in R3 run in
O(n3) time. Consequently, attention has shifted to developing approximation algorithms [BH01].
The goal is to compute an ε-approximation, for some 0 < ε < 1, of the extent measure in roughly
O(nf(ε)) or even O(n + f(ε)) time, that is, in time near-linear or linear in n. The framework of
coresets has recently emerged as a general approach to achieve this goal. For any extent measure µ
and an input point set P for which we wish to compute the extent measure, the general idea is to
argue that there exists an easily computable subset Q ⊆ P , called a coreset, of size 1/εO(1), so that
solving the underlying problem on Q gives an approximate solution to the original problem. For
example, if µ(Q) ≥ (1− ε)µ(P), then this approach gives an approximation to the extent measure
of P . In the context of shape fitting, an appropriate property for Q is that for any shape γ from
the underlying family, µ(Q, γ) ≥ (1− ε)µ(P, γ). With this property, the approach returns a shape
γ∗ that is an approximate best fit to P .

Following earlier work [BH01, Cha02, ZS02] that hinted at the generality of this approach,
Agarwal et al. [AHV04] provided a formal framework by introducing the notion of ε-kernel and
showing that it yields a coreset for many optimization problems. They also showed that this
technique yields approximation algorithms for a wide range of problems. Since the appearance of
preliminary versions of their work, many subsequent papers have used a coreset based approach
for other geometric optimization problems, including clustering and other extent-measure problems
[APV02, BC03b, BHI02, HW04, KMY03, KY04].

In this paper, we have attempted to review coreset based algorithms for approximating extent
measure and other optimization problems. Our aim is to communicate the flavor of the techniques
involved and a sense of the power of this paradigm by discussing a number of its applications.
We begin in Section 2 by describing ε-kernels of point sets and algorithms for constructing them.
Section 3 defines the notion of ε-kernel for functions and describes a few of its applications. We
then describe in Section 4 a simple incremental algorithm for shape fitting. Section 5 discusses
the computation of of ε-kernels in the streaming model. Although ε-kernels provide coresets for a

1A slab is a region lying between two parallel hyperplanes; a spherical shell is the region lying between two
concentric spheres; a cylindrical shell is the region lying between two coaxial cylinders.

2

variety of extent measures, they do not give coresets for many other problems, including clustering.
Section 6 surveys the known results on coresets for clustering. The size of the coresets discussed in
these sections increases exponentially with the dimension, so we conclude in Section 7 by discussing
coresets for points in very high dimensions whose size depends polynomially on the dimension, or
is independent of the dimension altogether.

2 Kernels for Point Sets

Let µ be a measure function (e.g., the width of a point set) from subsets of Rd to the non-negative
reals R+ ∪ {0} that is monotone, i.e., for P1 ⊆ P2, µ(P1) ≤ µ(P2). Given a parameter ε > 0, we
call a subset Q ⊆ P an ε-coreset of P (with respect to µ) if

(1− ε)µ(P) ≤ µ(Q).

Agarwal et al. [AHV04] introduced the notion of ε-kernels and showed that it is an f(ε)-coreset
for numerous minimization problems. We begin by defining ε-kernels and related concepts.

ω(u, P)

ω(u, Q)

ũ

Figure 1. Directional width and ε-kernel.

ε-kernel. Let Sd−1 denote the unit sphere centered at the origin in Rd. For any set P of points
in Rd and any direction u ∈ Sd−1, we define the directional width of P in direction u, denoted by
ω(u, P), to be

ω(u, P) = max
p∈P

〈u, p〉 −min
p∈P

〈u, p〉 ,

where 〈·, ·〉 is the standard inner product. Let ε > 0 be a parameter. A subset Q ⊆ P is called an
ε-kernel of P if for each u ∈ Sd−1,

(1− ε)ω(u, P) ≤ ω(u,Q).

Clearly, ω(u,Q) ≤ ω(u, P). Agarwal et al. [AHV04] call a measure function µ faithful if there exists
a constant c, depending on µ, so that for any P ⊆ Rd and for any ε, an ε-kernel of P is a cε-coreset
for P with respect to µ. Examples of faithful measures include diameter, width, radius of the
smallest enclosing ball, and volume of the smallest enclosing box [AHV04]. A common property of
these measures is that µ(P) = µ(conv(P)). We can thus compute an ε-coreset of P with respect
to several measures by simply computing an (ε/c)-kernel of P .

Algorithms for computing kernels. An ε-kernel of P is a subset whose convex hull approxi-
mates, in a certain sense, the convex hull of P . Other notions of convex hull approximation have
been studied and methods have been developed to compute them, see [BFP82, BI76, Dud74] for a
sample. For example, Bentley, Faust, and Preparata [BFP82] show that for any point set P ⊆ R2

3

and ε > 0, a subset Q of P whose size is O(1/ε) can be computed in O(|P |+1/ε) time such that for
any p ∈ P , the distance of p to conv(Q) is at most εdiam(Q). Note however that such a guarantee
is not enough if we want Q to be a coreset of P with respect to faithful measures. For instance,
the width of Q could be arbitrarily small compared to the width of P . The width of an ε-kernel of
P , on the other hand, is easily seen to be a good approximation to the width of P . To the best of
our knowledge, the first efficient method for computing a small ε-kernel of an arbitrary point set is
implicit in the work of Barequet and Har-Peled [BH01].

We call P α-fat, for α ≤ 1, if there exists a point p ∈ Rd and a hypercube C centered at the
origin so that

p+ αC ⊂ conv(P) ⊂ p+ C.

A stronger version of the following lemma, which is very useful for constructing an ε-kernel, was
proved in [AHV04] by adapting a scheme of [BH01]. Their scheme can be thought of as one that
quickly computes an approximation to the Löwner-John Ellipsoid [Joh48].

Lemma 2.1 Let P be a set of n points in Rd such that the volume of conv(P) is non-zero, and let
C = [−1, 1]d. One can compute in O(n) time an affine transform τ so that τ(P) is an α-fat point
set satisfying αC ⊂ conv(τ(P)) ⊂ C, where α is a positive constant depending on d, and so that a
subset Q ⊆ P is an ε-kernel of P if and only if τ(Q) is an ε-kernel of τ(P).

The importance of Lemma 2.1 is that it allows us to adapt some classical approaches for convex
hull approximation [BFP82, BI76, Dud74] which in fact do compute an ε-kernel when applied to
fat point sets.

We now describe algorithms for computing ε-kernels. By Lemma 2.1, we can assume that
P ⊆ [−1,+1]d that is α-fat. We begin with a very simple algorithm.

Let δ be the largest value such that δ ≤ (ε/
√
d)α and 1/δ is an integer. We consider the d-

dimensional grid ZZ of size δ. That is, ZZ = {(δi1, . . . , δid) | i1, . . . , id ∈ Z} . For each column along
the xd-axis in ZZ, we choose one point from the highest nonempty cell of the column and one point
from the lowest cell of the column; see Figure 2 (i). Let Q be the set of chosen points. Since
P ⊆ [−1,+1]d, |Q| = O(1/(αε)d−1). Moreover Q can be constructed in time O(n + 1/(αε)d−1)
provided that the ceiling operation can be performed in constant time. Agarwal et al. [AHV04]
showed that Q is an ε-kernel of P . Hence, we can compute an ε-kernel of P of size O(1/εd−1) in time
O(n+ 1/εd−1). This approach resembles the algorithm of Bentley, Faust, and Preparata [BFP82].

Next we describe an improved construction, observed independently by Chan [Cha04] and
Yu et al. [YAPV04], which is a simplification of an algorithm by Agarwal et al. [AHV04], which in
turn is an adaptation of a method of Dudley [Dud74]. Let S be the sphere of radius

√
d+1 centered

at the origin. Set δ =
√
εα ≤ 1/2. One can construct a set I of O(1/δd−1) = O(1/ε(d−1)/2) points

on the sphere S so that for any point x on S, there exists a point y ∈ I such that ‖x− y‖ ≤ δ. We
process P into a data structure that can answer ε-approximate nearest-neighbor queries [AMN+98].
For a query point q, let ϕ(q) be the point of P returned by this data structure. For each point y ∈ I,
we compute ϕ(y) using this data structure. We return the set Q = {ϕ(y) | y ∈ I}; see Figure 2 (ii).

We now briefly sketch, following the argument in [YAPV04], why Q is is an ε-kernel of P . For
simplicity, we prove the claim under the assumption that ϕ(y) is the exact nearest-neighbor of y in
P . Fix a direction u ∈ Sd−1. Let σ ∈ P be the point that maximizes 〈u, p〉 over all p ∈ P . Suppose
the ray emanating from σ in direction u hits S at a point x. We know that there exists a point
y ∈ I such that ‖x− y‖ ≤ δ. If ϕ(y) = σ, then σ ∈ Q and

max
p∈P

〈u, p〉 −max
q∈Q

〈u, q〉 = 0.

4

Now suppose ϕ(y) 6= σ. Let B be the d-dimensional ball of radius ||y − σ|| centered at y. Since
‖y − ϕ(y)‖ ≤ ‖y − σ‖, ϕ(y) ∈ B. Let us denote by z the point on the sphere ∂B that is hit by the
ray emanating from y in direction −u. Let w be the point on zy such that zy⊥σw and h the point
on σx such that yh⊥σx; see Figure 2 (iii).

ε

C

S

y

ϕ(y)

CH(P)

B

x

h

w

u

S

y

z

σ

(i) (ii) (iii)

Figure 2. (i) A grid based algorithm for constructing an ε-kernel. (ii) An improved algorithm. (iii) Correctness of
the improved algorithm.

The hyperplane normal to u and passing through z is tangent to B. Since ϕ(y) lies inside B,
〈u, ϕ(y)〉 ≥ 〈u, z〉. Moreover, it can be shown that 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε. Thus, we can write

max
p∈P

〈u, p〉 −max
q∈Q

〈u, q〉 ≤ 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε.

Similarly, we have minp∈P 〈u, p〉 −minq∈Q 〈u, q〉 ≥ −αε.
The above two inequalities together imply that ω(u,Q) ≥ ω(u, P)− 2αε. Since αC ⊂ conv(P),

ω(u, P) ≥ 2α. Hence ω(u,Q) ≥ (1 − ε)ω(u, P), for any u ∈ Sd−1, thereby implying that Q is an
ε-kernel of P .

A straightforward implementation of the above algorithm, i.e., the one that answers a nearest-
neighbor query by comparing the distances to all the points, runs in O(n/ε(d−1)/2) time. However,
we can first compute an (ε/2)-kernel Q′ of P of size O(1/εd−1) using the simple algorithm and
then compute an (ε/4)-kernel using the improved algorithm. Chan [Cha04] introduced the notion
of discrete Voronoi diagrams, which can be used for computing the nearest neighbors of a set of
grid points among the sites that are also a subset of a grid. Using this structure Chan showed that
ϕ(y), for all y ∈ I, can be computed in a total time of O(n + 1/εd−1) time. Putting everything
together, one obtains an algorithm that runs in O(n+ 1/εd−1) time. Chan in fact gives a slightly
improved result:

Theorem 2.2 ([Cha04]) Given a set P of n points in Rd and a parameter ε > 0, one can compute
an ε-kernel of P of size O(1/ε(d−1)/2) in time O(n+ 1/εd−(3/2)).

Experimental results. Yu et al. [YAPV04] implemented their ε-kernel algorithm and tested its
performance on a variety of inputs. They measure the quality of an ε-kernel Q of P as the maximum
relative error in the directional width of P and Q. Since it is hard to compute the maximum error
over all directions, they sampled a set ∆ of 1000 directions in Sd−1 and computed the maximum
relative error with respect to these directions, i.e.,

err(Q,P) = max
u∈∆

ω(u, P)− ω(u,Q)
ω(u, P)

. (1)

5

Input Input d = 2 d = 4 d = 6 d = 8
Type Size Prepr Query Prepr Query Prepr Query Prepr Query

10,000 0.03 0.01 0.06 0.05 0.10 9.40 0.15 52.80
sphere 100,000 0.54 0.01 0.90 0.50 1.38 67.22 1.97 1393.88

1, 000,000 9.25 0.01 13.08 1.35 19.26 227.20 26.77 5944.89

10,000 0.03 0.01 0.06 0.03 0.10 2.46 0.16 17.29
cylinder 100,000 0.60 0.01 0.91 0.34 1.39 30.03 1.94 1383.27

1, 000,000 9.93 0.01 13.09 0.31 18.94 87.29 26.12 5221.13

10,000 0.03 0.01 0.06 0.01 0.10 0.08 0.15 2.99
clustered 100,000 0.31 0.01 0.63 0.02 1.07 1.34 1.64 18.39

1, 000,000 5.41 0.01 8.76 0.02 14.75 1.08 22.51 54.12

Table 1. Running time for computing ε-kernels of various synthetic data sets, ε < 0.05. Prepr denotes the pre-
processing time, including converting P into a fat set and building ANN data structures. Query denotes the time
for performing approximate nearest-neighbor queries. Running time is measured in seconds. The experiments were
conducted on a Dell PowerEdge 650 server with a 3.06GHz Pentium IV processor and 3GB memory, running Linux
2.4.20.

They implemented the constant-factor approximation algorithm by Barequet and Har-Peled [BH01]
for computing the minimum-volume bounding box to convert P into an α-fat set, and they used
the ANN library [AM98] for answering approximate nearest-neighbor queries. Table 1 shows the
running time of their algorithm for a variety of synthetic inputs: (i) points uniformly distributed
on a sphere, (ii) points distributed on a cylinder, and (iii) clustered point sets, consisting of 20
equal sized clusters. The running time is decomposed into two components: (i) preprocessing time
that includes the time spent in converting P into a fat set and in preprocessing P for approximate
nearest-neighbor queries, and (ii) query time that includes the time spent in computing ϕ(x) for
x ∈ I. Figure 3 shows how the error err(Q,P) changes as the function of kernel. These experiments
show that their algorithm works extremely well in low dimensions (≤ 4) both in terms of size and
running time. See [YAPV04] for more detailed experiments.

0 100 200 300 400 500 600 7000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kernel Size

Ap
pr

ox
im

at
io

n
Er

ro
r

2D
4D
6D
8D

0 100 200 300 400 5000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kernel Size

Ap
pr

ox
im

at
io

n
Er

ro
r

Bunny: 35,947 vertices
Dragon: 437,645 vertices

(a) (b)

Figure 3. Approximation errors under different sizes of computed ε-kernels. (a) sphere, (b) various geometric
models. All synthetic inputs had 100,000 points.

Applications. Theorem 2.2 can be used to compute coresets for faithful measures, defined in
Section 2. In particular, if we have a faithful measure µ that can be computed in O(nα) time,
then by Theorem 2.2, we can compute a value µ, (1 − ε)µ(P) ≤ µ ≤ µ(P) by first computing an
(ε/c)-kernel Q of P and then using an exact algorithm for computing µ(Q). The total running
time of the algorithm is O(n+ 1/εd−(3/2) + 1/εα(d−1)/2). For example, a (1 + ε)-approximation of

6

the diameter of a point set can be computed in time O(n + 1/εd−1) since the exact diameter can
be computed in quadratic time. By being a little more careful, the running time of the diameter
algorithm can be improved to O(n+1/εd−(3/2)) [Cha04]. Table 2 gives running times for computing
an (1 + ε)-approximation of a few faithful measures.

Extent Time complexity
Diameter n+ 1/εd−(3/2)

Width (n+ 1/εd−2) log(1/ε)
Minimum enclosing cylinder n+ 1/εd−1

Minimum enclosing box(3D) n+ 1/ε3

Table 2. Time complexity of computing (1 + ε)-approximations for certain faithful measures.

We note that ε-kernels in fact guarantee a stronger property for several faithful measures. For
instance, if Q is an ε-kernel of P , and C is some cylinder containing Q, then a “concentric” scaling
of C by a factor of (1 + cε), for some constant c, contains P . Thus we can compute not only an
approximation to the minimum radius r∗ of a cylinder containing P , but also a cylinder of radius
at most (1 + ε)r∗ that contains P .

The approach described in this section for approximating faithful measures had been used
for geometric approximation algorithms before the framework of ε-kernels was introduced; see
e.g. [AP02, BH01, Cha02, ZS02]. The framework of ε-kernels, however, provides a unified approach
and turns out to be crucial for the approach developed in the next section for approximating
measures that are not faithful.

3 Kernels for Sets of Functions

The crucial notion used to derive coresets and efficient approximation algorithms for measures that
are not faithful is that of a kernel of a set of functions.

x x

EF(x)
EG(x)

UF(x)

LF(x)

EF(x)

Figure 4. Envelopes, extent, and ε-kernel.

Envelopes and extent. Let F = {f1, . . . , fn} be a set of n d-variate real-valued functions defined
over x = (x1, . . . , xd−1, xd) ∈ Rd. The lower envelope of F is the graph of the function LF : Rd → R
defined as LF(x) = minf∈F f(x). Similarly, the upper envelope of F is the graph of the function

7

UF : Rd → R defined as UF(x) = maxf∈F f(x). The extent EF : Rd → R of F is defined as

EF(x) = UF(x)− LF(x).

Let ε > 0 be a parameter. We say that a subset G ⊆ F is an ε-kernel of F if

(1− ε)EF(x) ≤ EG(x) ∀x ∈ Rd.

Obviously, EG(x) ≤ EF(x), as G ⊆ F.
Let H = {h1, . . . , hn} be a family of d-variate linear functions and ε > 0 a parameter. We

define a duality transformation that maps the d-variate function (or a hyperplane in Rd+1) h :
xd+1 = a1x1 + a2x2 + · · · + adxd + ad+1 to the point h? = (a1, a2, . . . , ad, ad+1) in Rd+1. Let
H? = {h? | h ∈ H}. It can be proved [AHV04] that K ⊆ H is an ε-kernel of H if and only if K∗ is
an ε-kernel of H∗. Hence, by computing an ε-kernel of H∗ we can also compute an ε-kernel of H.
The following is therefore a corollary of Theorem 2.2.

Corollary 3.1 ([AHV04, Cha04]) Given a set F of n d-variate linear functions and a parameter
ε > 0, one can compute an ε-kernel of F of size O(1/εd/2) in time O(n+ 1/εd−(1/2)).

We can compute ε-kernels of a set of polynomial functions by using the notion of linearization.

Linearization. Let f(x, a) be a (d+ p)-variate polynomial, x ∈ Rd and a ∈ Rp. Let a1, . . . , an ∈
Rp, and set F =

{
fi(x) ≡ f(x, ai) | 1 ≤ i ≤ n

}
. Suppose we can express f(x, a) in the form

f(x, a) = ψ0(a) + ψ1(a)ϕ1(x) + · · ·+ ψk(a)ϕk(x), (2)

where ψ0, . . . , ψk are p-variate polynomials and ϕ1, . . . , ϕk are d-variate polynomials. We define the
map ϕ : Rd → Rk

ϕ(x) = (ϕ1(x), . . . , ϕk(x)).

Then the image Γ =
{
ϕ(x) | x ∈ Rd

}
of Rd is a d-dimensional surface in Rk (if k ≥ d), and for any

a ∈ Rp, f(x, a) maps to a k-variate linear function

ha(y1, . . . , yk) = ψ0(a) + ψ1(a)y1 + · · ·+ ψk(a)yk

in the sense that for any x ∈ Rd, f(x, a) = ha(ϕ(x)). We refer to k as the dimension of the
linearization ϕ, and say that F admits a linearization of dimension k. The most popular example
of linearization is perhaps the so-called lifting transform that maps Rd to a unit paraboloid in Rd+1.
For example, let f(x1, x2, a1, a2, a3) be the function whose absolute value is some measure of the
“distance” between a point (x1, x2) ∈ R2 and a circle with center (a1, a2) and radius a3, which is
the 5-variate polynomial

f(x1, x2, a1, a2, a3) = a2
3 − (x1 − a1)2 − (x2 − a2)2 .

We can rewrite f in the form

f(x1, x2, a1, a2, a3) = [a2
3 − a2

1 − a2
2] + [2a1x1] + [2a2x2]− [x2

1 + x2
2] , (3)

thus, setting

ψ0(a) = a2
3 − a2

1 − a2
2, ψ1(a) = 2a1, ψ2(a) = 2a2, ψ3(a) = −1,

ϕ1(x) = x1, ϕ2(x) = x2, ϕ3(x) = x2
1 + x2

2,

8

we get a linearization of dimension 3. Agarwal and Matoušek [AM94] describe an algorithm that
computes a linearization of the smallest dimension under certain mild assumptions.

Returning to the set F, let H = {hai | 1 ≤ i ≤ n}. It can be verified [AHV04] that a subset
K ⊆ H is an ε-kernel if and only if the set G = {fi | hai ∈ K} is an ε-kernel of F.

Combining the linearization technique with Corollary 3.1, one obtains the following result
[AHV04].

Theorem 3.2 Let F = {f1(x), . . . , fn(x)} be a family of d-variate polynomials, where fi(x) ≡
f(x, ai) and ai ∈ Rp for each 1 ≤ i ≤ n, and f(x, a) is a (d+p)-variate polynomial. Suppose that F

admits a linearization of dimension k, and let ε > 0 be a parameter. We can compute an ε-kernel
of F of size O(1/εσ) in time O(n+ 1/εk−1/2), where σ = min {d, k/2}.

Let F =
{
(f1)1/r, . . . , (fn)1/r

}
, where r ≥ 1 is an integer and each fi is a polynomial of some

bounded degree. Agarwal et al. [AHV04] showed that if G is an (ε/2(r−1))r-kernel of {f1, . . . , fn},
then

{
(fi)1/r | fi ∈ G

}
is an ε-kernel of F. Hence, we obtain the following.

Theorem 3.3 Let F =
{
(f1)1/r, . . . , (fn)1/r

}
be a family of d-variate functions as in Theorem 3.2,

each fi is a polynomial that is non-negative for every x ∈ Rd, and r ≥ 2 is an integer constant. Let
ε > 0 be a parameter. Suppose that F admits a linearization of dimension k. We can compute in
O(n+ 1/εr(k−1/2)) time an ε-kernel of size O(1/εrσ) where σ = min {d, k/2}.

Applications to shape fitting problems. Agarwal et al. [AHV04] showed that Theorem 3.3
can be used to compute coresets for a number of unfaithful measures as well. We illustrate the
idea by sketching their (1 + ε)-approximation algorithm for computing a minimum-width spherical
shell that contains P = {p1, . . . , pn}. A spherical shell is (the closure of) the region bounded by
two concentric spheres: the width of the shell is the difference of their radii. Let fi(x) = ‖x− pi‖.
Set F = {f1, . . . , fn}. Let w(x, S) denote the width of the thinnest spherical shell centered at x
that contains a point set S, and let w∗ = w∗(S) = minx∈Rd w(x, S) be the width of the thinnest
spherical shell containing S. Then

w(x, P) = max
p∈P

‖x− p‖ −min
p∈P

‖x− p‖ = max
fp∈F

fp(x)− min
fp∈F

fp(x) = EF(x).

Let G be an ε-kernel of F, and suppose Q ⊆ P is the set of points corresponding to G. Then for
any x ∈ Rd, we have w(x,Q) ≥ (1 − ε)w(x, P). So if we first compute G (and therefore Q) using
Theorem 3.3, compute the minimum-width spherical shell A∗ containing Q, and take the smallest
spherical shell containing P centered at the center of A∗, we get a (1 +O(ε))-approximation to the
minimum-width spherical shell containing P . The running time of such an approach is O(n+f(ε)).
It is a simple and instructive exercise to translate this approach to the problem of computing a
(1 + ε)-approximation of the minimum-width cylindrical shell enclosing a set of points.

Using the kernel framework, Har-Peled and Wang [HW04] have shown that shape fitting prob-
lems can be approximated efficiently even in the presence of a few outliers. Let us consider the
following problem: Given a set P of n points in Rd, and an integer 1 ≤ k ≤ n, find the minimum-
width slab that contains n − k points from P . They present an ε-approximation algorithm for
this problem whose running time is near-linear in n. They obtain similar results for problems like
minimum-width spherical/cylindrical shell and indeed all the shape fitting problems to which the
kernel framework applies. Their algorithm works well if the number of outliers k is small. Erick-
son et al [EHM04] show that for large values of k, say roughly n/2, the problem is as hard as the
(d− 1)-dimensional affine degeneracy problem: Given a set of n points (with integer co-ordinates)

9

in Rd−1, do any d of them lie on a common hyperplane? It is widely believed that the affine
degeneracy problem requires Ω(nd−1) time.

Points in motion. Theorems 3.2 and 3.3 can be used to maintain various extent measures of a set
of moving points. Let P = {p1, . . . , pn} be a set of n points in Rd, each moving independently. Let
pi(t) = (pi1(t), . . . , pid(t)) denote the position of point pi at time t. Set P (t) = {pi(t) | 1 ≤ i ≤ n}.
If each pij is a polynomial of degree at most r, we say that the motion of P has degree r. We call
the motion of P linear if r = 1 and algebraic if r is bounded by a constant.

Given a parameter ε > 0, we call a subset Q ⊆ P an ε-kernel of P if for any direction u ∈ Sd−1

and for all t ∈ R,
(1− ε)ω(u, P (t)) ≤ ω(u,Q(t)),

where ω() is the directional width. Assume that the motion of P is linear, i.e., pi(t) = ai + bit, for
1 ≤ i ≤ n, where ai, bi ∈ Rd. For a direction u = (u1, . . . , ud) ∈ Sd−1, we define a polynomial

fi(u, t) = 〈pi(t), u〉 = 〈ai + bit, u〉

=
d∑

j=1

aijuj +
d∑

j=1

bij · (tuj).

Set F = {f1, . . . , fn}. Then

ω(u, P (t)) = max
i

〈pi(t), u〉 −min
i
〈pi(t), u〉 = max

i
fi(u, t)−min

i
fi(u, t) = EF(u, t).

Evidently, F is a family of (d+ 1)-variate polynomials that admits a linearization of dimension 2d
(there are 2d monomials). Exploiting the fact that u ∈ Sd−1, Agarwal et al. [AHV04] show that
F is actually a family of d-variate polynomials that admits a linearization of dimension 2d − 1.
Using Theorem 3.2, we can therefore compute an ε-kernel of P of size O(1/εd−(1/2)) in time O(n+
1/ε2d−(3/2)). The above argument can be extended to higher degree motions in a straightforward
manner. The following theorem summarizes the main result.

Theorem 3.4 Given a set P of n moving points in Rd whose motion has degree r > 1 and a
parameter ε > 0, we can compute an ε-kernel Q of P of size O(1/εd) in O(n + 1/ε(r+1)d−(3/2))
time.

The theorem implies that at any time t, Q(t) is a coreset for P (t) with respect to all faithful
measures. Using the same technique, a similar result can be obtained for unfaithful measures such
as the minimum-width spherical shell.

Yu et al. [YAPV04] have performed experiments with kinetic data structures that maintain
the axes-parallel bounding box and convex hull of a set of points P with algebraic motion. They
compare the performance of the kinetic data structure for the entire point set P with that of the
data structure for a kernel Q computed by methods similar to Theorem 3.4. The experiments
indicate that the number of events that the data structure for Q needs to process is significantly
lower than for P even when Q is a very good approximation to P .

4 An Incremental Algorithm for Shape Fitting

Let P be a set of n points in Rd. Bădoiu et al. [BHI02] gave a simple incremental algorithm for
computing an ε-approximation to the minimum-enclosing ball of P . They showed, rather surpris-
ingly, that the number of iterations of their algorithm depends only on ε and is independent of

10

both d and n. The bound was improved by Bădoiu and Clarkson [BC03b, BC03a] and by Ku-
mar et al. [KMY03]. Kumar and Yıldırım [KY04] analyzed a similar algorithm for the minimum-
volume enclosing ellipsoid and gave a bound on the number of iterations that is independent of d.
The minimum-enclosing ball and minimum-enclosing ellipsoid are convex optimization problems,
and it is somewhat surprising that a variant of this iterative algorithm works for non-convex op-
timization problems, e.g., the minimum-width cylinder, slab, spherical shell, and cylindrical shell
containing P . As shown by Yu et al. [YAPV04], the number of iterations of the incremental
algorithm is independent of the number n of points in P for all of these problems.

We describe here the version of the algorithm for computing the minimum-width slab contain-
ing P . The algorithm and its proof of convergence are readily translated to the other problems
mentioned. Let Q be any affinely independent subset of d+ 1 points in P .

1. Let S be the minimum-width slab containing Q, computed by some brute-force method. If a
(1 + ε)-expansion of S contains P , we return this (1 + ε)-expansion.

2. Otherwise, let p ∈ P be the point farthest from S.

3. Set Q = Q ∪ {p} and go to Step 1.

It is clear that when the algorithm terminates, it does so with an ε-approximation to the
minimum-width slab containing P . Also, the running time of the algorithm is O(k(n+ f(O(k)))),
where k is the number of iterations of the algorithm, and f(t) is the running time of the brute-force
algorithm for computing a minimum-enclosing slab of t points. Following an argument similar to the
one used for proving the correctness of the algorithm for constructing ε-kernels, Yu et al. [YAPV04]
proved that the above algorithm converges within O(1/ε(d−1)/2) iterations. They also do an ex-
perimental analysis of this algorithm and conclude that its typical performance is quite good in
comparison with even the coreset based algorithms. This is because the number of iterations for
typical point sets is quite small, as might be expected. See the original paper for details.

We conclude this section with an interesting open problem: Does the incremental algorithm for
the minimum-enclosing cylinder problem terminate in O(f(d) · g(d, ε)) iterations, where f(d) is a
function of d only, and g(d, ε) is a function that depends only polynomially on d? Note that the
algorithm for the minimum-enclosing ball terminates in O(1/ε) iterations, while the algorithm for
the minimum-enclosing slab can be shown to require Ω(1/ε(d−1)/2) iterations.

5 Coresets in a Streaming Setting

Algorithms for computing an ε-kernel for a given set of points in Rd can be adapted for efficiently
maintaining an ε-kernel of a set of points under insertions and deletions [AHV04]. Here we describe
the algorithm of Agarwal et al. [AHV04] for maintaining ε-kernels in the streaming setting. Suppose
we are receiving a stream of points p1, p2, . . . in Rd. Given a parameter ε > 0, we wish to maintain
an ε-kernel of the n points received so far. The resource that we are interested in minimizing
is the space used by the data structure. Note that our analysis is in terms of n, the number of
points inserted into the data structure. However, n does not need to be specified in advance. We
assume the existence of an algorithm A that can compute a δ-kernel of a subset S ⊆ P of size
O(1/δk) in time O(|S|+TA(δ)); obviously TA(δ) = Ω(1/δk). We will use A to maintain an ε-kernel
dynamically. Besides such an algorithm, our scheme only uses abstract properties of kernels such
as the following:

(1) If P2 is an ε-kernel of P1, and P3 is a δ-kernel of P2, then P3 is a (δ + ε)-kernel of P1;

11

(2) If P2 is an ε-kernel of P1, and Q2 is an ε-kernel of Q1, then P2∪Q2 is an ε-kernel of P1∪Q1.2

Thus the scheme applies more generally, for instance, to some notions of coresets defined in the
clustering context.

We assume without loss of generality that 1/ε is an integer. We use the dynamization technique
of Bentley and Saxe [BS80], as follows: Let P = 〈p1, . . . , pn〉 be the sequence of points that we
have received so far. For integers i ≥ 1, let ρi = ε/ci2, where c > 0 is a constant, and set
δi =

∏i
l=1(1 + ρl) − 1. We partition P into subsets P0, P1, . . . , Pu, where u =

⌊
log2 ε

kn
⌋

+ 1, as
follows. |P0| = n mod 1/εk, and for 1 ≤ i ≤ u, |Pi| = 2i−1/εk if the ith rightmost bit in the binary
expansion of

⌊
εkn
⌋

is 1, otherwise |Pi| = 0. Furthermore, if 0 ≤ i < j ≤ u, the points in Pj arrived
before any point in Pi. These conditions uniquely specify P0, . . . , Pu. We refer to i as the rank of
Pi. Note that for i ≥ 1, there is at most one non-empty subset of rank i.

Unlike the standard Bentley-Saxe technique, we do not maintain each Pi explicitly. Instead, for
each non-empty subset Pi, we maintain a δi-kernel Qi of Pi; if Pi = ∅, we set Qi = ∅ as well. We
also let Q0 = P0. Since

1 + δi =
i∏

l=1

(
1 +

ε

cl2

)
≤ exp

(i∑
l=1

ε

cl2

)
= exp

(
ε

c

i∑
l=1

1
l2

)
≤ exp

(
π2ε

6c

)
≤ 1 +

ε

3
, (4)

provided c is chosen sufficiently large, Qi is an (ε/3)-kernel of Pi. Therefore,
⋃u

i=0Qi is an (ε/3)-
kernel of P . We define the rank of a set Qi to be i. For i ≥ 1, if Pi is non-empty, |Qi| will be
O(1/ρk

i) because ρi ≤ δi; note that |Q0| = |P0| < 1/εk.
For each i ≥ 0, we also maintain an ε/3-kernel Ki of

⋃
j≥iQj , as follows. Let u =

⌊
log2(εkn)

⌋
+1

be the largest value of i for which Pi is non-empty. We have Ku = Qu, and for 1 ≤ i < u, Ki is a
ρi-kernel of Ki+1 ∪Qi. Finally, K0 = Q0 ∪K1. The argument in (4), by the coreset properties (1)
and (2), implies that Ki is an (ε/3)-kernel of

⋃
j≥iQj , and thus K0 is the required ε-kernel of P .

The size of the entire data structure is
u∑

i=0

(|Qi|+ |Ki|) ≤ |Q0|+ |K0|+
u∑

i=1

O(1/ρk
i)

= O(1/εk) +
blog2 εknc+1∑

i=1

O

(
i2k

εk

)
= O

(
log2k+1 n

εk

)
.

At the arrival of the next point pn+1, the data structure is updated as follows. We add pn+1 to
Q0 (and conceptually to P0). If |Q0| < 1/εk then we are done. Otherwise, we promote Q0 to have
rank 1. Next, if there are two δj-kernels Qx, Qy of rank j, for some j ≤

⌊
log2 ε

k(n+ 1)
⌋

+ 1, we
compute a ρj+1-kernel Qz of Qx ∪Qy using algorithm A, set the rank of Qz to j + 1, and discard
the sets Qx and Qy. By construction, Qz is a δj+1-kernel of Pz = Px ∪ Py of size O(1/ρk

j+1) and
|Pz| = 2j/εk. We repeat this step until the ranks of all Qi’s are distinct. Suppose ξ is the maximum
rank of a Qi that was reconstructed, then we recompute Kξ, . . . ,K0 in that order. That is, for
ξ ≥ i ≥ 1, we compute a ρi-kernel of Ki+1 ∪Qi and set this to be Ki; finally, we set K0 = K1 ∪Q0.

2This property is, strictly speaking, not true for kernels. However, if we slightly modify the definition to say that
Q ⊆ P is an ε-kernel of P if the 1/(1 − ε)-expansion of any slab that contains Q also contains P , both properties
are seen to hold. Since the modified definition is intimately connected with the definition we use, we feel justified in
pretending that the second property also holds for kernels.

12

For any fixed i ≥ 1, Qi and Ki are constructed after every 2i−1/εk insertions, therefore the
amortized time spent in updating Q after inserting a point is

blog2 εknc+1∑
i=1

εk

2i−1
O

(
i2k

εk
+ TA

(ε

ci2

))
= O

(blog2 εknc+1∑
i=1

εk

2i−1
TA

(ε

ci2

))
.

If TA(x) is bounded by a polynomial in 1/x, then the above expression is bounded by O(εkTA(ε)).

Theorem 5.1 ([AHV04]) Let P be a stream of points in Rd, and let ε > 0 be a parameter. Sup-
pose that for any subset S ⊆ P , we can compute an ε-kernel of S of size O(1/εk) in O(|S|+TA(ε))
time, where TA(ε) ≥ 1/εk is bounded by a polynomial in 1/ε. Then we can maintain an ε-kernel of P
of size O(1/εk) using a data structure of size O(log2k+1(n)/εk). The amortized time to insert a point
is O(εkTA(ε)), and the running time in the worst case is O

(
(log2k+1 n)/εk + TA(ε/ log2 n) log n

)
.

Combined with Theorem 2.2, we get a data-structure using (log n/ε)O(d) space to maintain an
ε-kernel of size O(1/ε(d−1)/2) using (1/ε)O(d) amortized time for each insertion.

Improvements. The previous scheme raises the question of whether there is a data structure
that uses space independent of the size of the point set to maintain an ε-kernel. Chan [Cha04]
shows that the answer is “yes” by presenting a scheme that uses only (1/ε)O(d) storage. This result
implies a similar result for maintaining coresets for all the extent measures that can be handled
by the framework of kernels. His scheme is somewhat involved, but the main ideas and difficulties
are illustrated by a simple scheme, reproduced below, that he describes that uses constant storage
for maintaining a constant-factor approximation to the radius of the smallest enclosing cylinder
containing the point set. We emphasize that the question is that of maintaining an approximation
to the radius: it is not hard to maintain the axis of an approximately optimal cylinder.

A very simple constant-factor offline algorithm for approximating the minimum-width cylinder
enclosing a set P of points was proposed by Agarwal et al. [AAS01]. The algorithm picks an
arbitrary input point, say o, finds the farthest point v from o, and returns the farthest point from
the line ov.

Let rad(P) denote the minimum radius of all cylinders enclosing P , and let d(p, `) denote the
distance between point p and line `. The following observation immediately implies an upper bound
of 4 on the approximation factor of the above algorithm.

Observation 5.2 d(p, ov) ≤ 2
(
‖o− p‖
‖o− v‖

+ 1
)

rad({o, v, p}).

Unfortunately, the above algorithm requires two passes, one to find v and one to find the radius,
and thus does not fit in the streaming framework. Nevertheless, a simple variant of the algorithm,
which maintains an approximate candidate for v on-line, works, albeit with a larger constant:

Theorem 5.3 ([Cha04]) Given a stream of points in Rd (where d is not necessarily constant), we
can maintain a factor-18 approximation of the minimum radius over all enclosing cylinders with
O(d) space and update time.

Proof: Initially, say o and v are the first two points, and set w = 0. We may assume that o is the
origin. A new point is inserted as follows:

13

insert(p):
1. w := max{w, rad({o, v, p})}
2. if ‖p‖ > 2 ‖v‖ then v := p
3. Return w

Note that after each point is inserted, the algorithm returns a quantity that is shown below to
be an approximation to the radius of the smallest enclosing cylinder of all the points inserted thus
far.

In the following analysis, wf and vf refer to the final values of w and v, and vi refers to the value
of v after its i-th change. Note that ‖vi‖ > 2 ‖vi−1‖ for all i. Also, we have wf ≥ rad({o, vi−1, vi})
since rad({o, vi−1, vi}) was one of the “candidates” for w. From Observation 5.2, it follows that

d(vi−1, ovi) ≤ 2
(
‖vi−1‖
‖vi‖

+ 1
)

rad({o, vi−1, vi}) ≤ 3rad({o, vi−1, vi}) ≤ 3wf .

Fix a point q ∈ P , where P denotes the entire input point set. Suppose that v = vj just after
q is inserted. Since ‖q‖ ≤ 2 ‖vj‖, Observation 5.2 implies that d(q, ovj) ≤ 6wf .

For i > j, we have d(q, ovi) ≤ d(q, ovi−1) + d(q̂, ovi), where q̂ is the orthogonal projection of q
to ovi−1. By similarity of triangles,

d(q̂, ovi) = (‖q̂‖ / ‖vi−1‖)d(vi−1, ovi) ≤ (‖q‖ / ‖vi−1‖)3wf .

Therefore,

d(q, ovi) ≤

6wf if i = j,

d(q, ovi−1) +
‖q‖

‖vi−1‖
3wf if i > j.

Expanding the recurrence, one can obtain that d(q, ovf) ≤ 18wf . So, wf ≤ rad(P) ≤ 18wf .

6 Coresets for Clustering

Given a set P of n points in Rd and an integer k > 0, a typical clustering problem asks for
partitioning P into k subsets (called clusters), P1, . . . , Pk, so that certain objective function is
minimzed. Given a function µ that measures the extent of a cluster, we consider two types of
clustering objective functions: centered clustering in which the objective function is max1≤i≤k µ(Pi),
and the summed clustering in which the objective function is

∑k
i=1 µ(Pi); k-center and k-line-center

are two examples of the first type, and k-median and k-means are two examples of the second type.
It is natural to ask whether coresets can be used to compute clusterings efficiently. In the

previous sections we showed that an ε-kernel of a point set provides a coreset for several extent
measures of P . However, the notion of ε-kernel is too weak to provide a coreset for a clustering
problem because it approximates the extent of the entire P while for clustering problems we need
a subset that approximates the extent of “relevant” subsets of P as well. Nevertheless, coresets
exist for many clustering problems, though the precise definition of coreset depends on the type of
clustering problem we are considering. We review some of these results in this section.

6.1 k-center and its variants

We begin by defining generalized k-clustering: we call a cluster to be a pair (f, S), where f is a
q-dimensional subspace for some q ≤ d and S ⊆ P . Define µ(f, S) = maxp∈S d(p, f). We define
B(f, r) to be the Minkowski sum of f and the ball of radius r centered at the origin; B(f, r) is a ball

14

(resp. cylinder) of radius r if f is a point (resp. line), and a slab of width 2r if f is a hyperplane.
Obviously, S ⊆ B(f, µ(f, S)). We call C = {(f1, P1), . . . , (fk, Pk)} a k-clustering (of dimension q)
if each fi is a q-dimensional subspace and P =

⋃k
i=1 Pi. We define µ(C) = max1≤i≤k µ(fi, Pi), and

set ropt(P, k, q) = minC µ(C), where the minimum is taken over all k-clusterings (of dimension q) of
P . We use Copt(P, k, q) to denote an optimal k-clustering (of dimension q) of P . For q = 0, 1, d−1,
the above clustering problems are called k-center, k-line-center, and k-hyperplane-center problems,
respectively; they are equivalent to covering P by k balls, cylinders, and slabs of minimum radius,
respectively.

We call Q ⊆ P an additive ε-coreset of P if for every k-clustering C = {(f1, Q1), . . . , (fk, Qk)}
of Q, with ri = µ(fi, Qi),

P ⊆
k⋃

i=1

B(fi, ri + εµ(C)),

i.e., union of the expansion of each B(fi, ri) by εµ(C) covers P . If the following stronger property
is also true for all k-clusterings C

P ⊆
k⋃

i=1

B(fi, (1 + ε)ri),

then we call Q a multiplicative ε-coreset.
We review the known results on additive and multiplicative coreset for k-center, k-line-center,

and k-hyperplane-center.

k-center. The existence of an additive coreset for k-center follows from the following simple
observation. Let r∗ = ropt(P, k, 0), and let B = {B1, . . . , Bk} be a family of k balls of radius r∗ that
cover P . Draw a d-dimensional Cartesian grid of side length εr∗/2d; O(k/εd) of these grid cells
intersect the balls in B. For each such cell τ that also contains a point of P , we arbitrarily choose
a point from P ∩ τ . The resulting set S of O(k/εd) points is an additive ε-coreset of P , as proved
by Agarwal and Procopiuc [AP02]. In order to construct S efficiently, we use Gonzalez’s greedy
algorithm [Gon85] to compute a factor-2 approximation of k-center, which returns a value r̃ ≤ 2r∗.
We then draw the grid of side length εr̃/4d and proceed as above. Using a fast implementation of
Gonzalez’s algorithm proposed in [FG88, Har04a], one can compute an additive ε-coreset of size
O(k/εd) in time O(n+ k/εd).

Agarwal et al. [APV02] proved the existence of a small multiplicative ε-coreset for k-center in
R1. It was subsequently extended to higher dimensions by Har-Peled [Har04b]. We sketch their
construction.

Theorem 6.1 ([APV02, Har04b]) Let P be a set of n points in Rd, and 0 < ε < 1/2 a param-
eter. There exists a multiplicative ε-coreset of size O

(
k!/εdk

)
of P for k-center.

Proof: For k = 1, by definition, an additive ε-coreset of P is also a multiplicative ε-coreset of P .
For k > 1, let r∗ = ropt(P, k, 0), the smallest r for which k balls of radius r cover P . We draw
a d-dimensional grid of side length εropt/(5d), and let C be the set of (hyper-)cubes of this grid
that contain points of P . Clearly, |C| = O(k/εd). Let Q′ be an additive (ε/2)-coreset of P . For
every cell ∆ in C, we inductively compute an ε-multiplicative coreset of P ∩ ∆ with respect to
(k − 1)-center. Let Q∆ be this set, and let Q =

⋃
∆∈CQ∆ ∪Q′. We argue below that the set Q is

the required multiplicative coreset. The bound on its size follows by a simple calculation.
Let B be any family of k balls that covers Q. Consider any hypercube ∆ of C. Suppose ∆

intersects all the k balls of B. Since Q′ is an additive (ε/2)-coreset of P , one of the balls in B must

15

be of radius at least r∗/(1 + ε/2) ≥ r∗(1 − ε/2). Clearly, if we expand such a ball by a factor of
(1 + ε), it completely covers ∆, and therefore also covers all the points of ∆ ∩ P .

We now consider the case when ∆ intersects at most k − 1 balls of B. By induction, Q∆ ⊆ Q
is an ε-multiplicative coreset of P ∩ ∆ for (k − 1)-center. Therefore, if we expand each ball in B

that intersects ∆ by a factor of (1 + ε), the resulting set of balls will cover P ∩∆.
Surprisingly, additive coresets for k-center exist even for a set of moving points in Rd. More

precisely, let P be a set of n points in Rd with algebraic motion of degree at most ∆, and let
0 < ε ≤ 1/2 be a parameter. Har-Peled [Har04a] showed that there exists a subset Q ⊆ P of size
O((k/εd)∆+1) so that for all t ∈ R, Q(t) is an additive ε-coreset of P (t). For k = O(n1/4εd), Q can
be computed in time O(nk/εd).

k-line-center. The existence of an additive coreset for k-line-center, i.e., for the problem of cover-
ing P by k congruent cylinders of the minimum radius, was first proved by Agarwal et al. [APV02].

Theorem 6.2 ([APV02]) Given a set P of finite points in Rd and a parameter 0 < ε < 1/2,
there exists an additive ε-coreset of size O((k + 1)!/εd−1+k) of P for the k-line-center problem.

Proof: Let Copt = {(`1, P1), . . . , (`k, Pk)} be an optimal k-clustering (of dimension 1) of P , and let
r∗ = µ(P, k, 1), i.e., the cylinders of radius r∗ with axes `1, . . . , `k cover P and Pi ⊂ B(`i, r∗). For
each 1 ≤ i ≤ k, draw a family Li of O(1/εd−1) lines parallel to `i so that for any point in Pi there is
a line in Li within distance εr∗/2. Set L =

⋃
i Li. We project each point p ∈ Pi to the line in Li that

is nearest to p. Let p̄ be the resulting projection of p, and let P̄` be the set of points that project
onto ` ∈ L. Set P̄ =

⋃
` P̄`. It can be argued that a multiplicative (ε/3)-coreset of P̄ is an additive

ε-coreset of P . Since the points in P̄` lie on a line, by Theorem 6.1, a multiplicative (ε/3)-coreset
Q̄` of P̄` of size O(k!/εk) exists. Observing that Q̄ =

⋃
`∈L Q̄` is a multiplicative (ε/3)-coreset of

P̄ , and thus Q = {p | p̄ ∈ Q̄} is an additive ε-coreset of P of size O((k + 1)!/εd−1+k).
Although Theorem 6.2 proves the existence of an additive coreset for k-line-center, the proof

is non-constructive. However, Agarwal et al. [APV02] have shown that the iterated reweighting
technique of Clarkson [Cla93] can be used in conjunction with Theorem 6.2 to compute an ε-
approximate solution to the k-line-center problem in O(n log n) expected time, with constants
depending on k, ε, and d.

When coresets do not exist. We now present two negative results on coresets for centered
clustering problems. Surprisingly, there are no multiplicative coresets for k-line-center even in R2.

Theorem 6.3 ([Har04b]) For any n ≥ 3, there exists a point set P = {p1, . . . , pn} in R2, such
that the size of any multiplicative (1/2)-coreset of P with for 2-line-center is at least |P | − 2.

Proof: Let pi = (1/2i, 2i) and P (i) = {p1, . . . , pi}. Let Q be a (1/2)-coreset of P = P (n). Let
Q−

i = Q ∩ P (i) and Q+
i = Q \Q−

i .
If the set Q does not contain the point pi =

(
1/2i, 2i

)
, for some 2 ≤ i ≤ n − 1, then Q−

i can
be covered by a horizontal strip h− of width ≤ 2i−1 that has the x-axis as its lower boundary.
Clearly, if we expand h− by a factor of 3/2, it still will not cover pi. Similarly, we can cover Q+

i by
a vertical strip h+ of width 1/2i+1 that has the y-axis as its left boundary. Again, if we expand h+

by a factor of 3/2, it will still not cover pi. We conclude, that any multiplicative (1/2)-coreset for
P must include all the points p2, p3, . . . , pn−1.

This construction can be embedded in R3, as described by Har-Peled [Har04b], to show that
even an additive coreset does not exist for 2-plane-clustering in R3, i.e., the problem of covering
the input point set of two slabs of the minimum width.

16

For the special case of 2-plane-center in R3, a near-linear-time approximation algorithm is
known [Har04b]. The problem of approximating the best k-hyperplane-clustering for k ≥ 3 in R3

and k ≥ 2 in higher dimensions in near-linear time is still open.

k-median and k-means clustering. Next we focus our attention to coresets for the summed
clustering problem. For simplicity, we consider the k-median clustering problem, which calls for
computing k “facility” points so that the average distance between the points of C and their
nearest facility is minimized. Since the objective function involves sum of distances, we need to
assign weights to points in coresets to approximate the objective function of the clustering for the
entire point set. We therefore define k-median clustering for a weighted point set.

Let P be a set of n points in Rd, and let w : P → Z+ be a weight function. For a point set
C ⊆ Rd, let µ(P,w,C) =

∑
p∈P w(p)d(p, C), where d(p, C) = minq∈C d(p, q). Given C, we partition

P into k clusters by assigning each point in P to its nearest neighbor in C. Define

µ(P,w, k) = min
C⊂Rd,|C|=k

µ(P,w,C).

For k = 1, it is the so-called Fermat-Weber problem [Wes93]. A subset Q ⊆ P with a weight
function χ : P → Z+ is called an ε-coreset for k-median if for any set C of k points in Rd,

(1− ε)µ(P,w,C) ≤ µ(Q,χ,C) ≤ (1 + ε)µ(P,w,C).

Here we sketch the proof by Har-Peled and Mazumdar [HM04] for the existence of a small coreset
for the k-median problem. There are two main ingredients in their construction. First suppose
we have at our disposal a set A = {a1, . . . , am} of “support” points in Rd so that µ(P,w,A) ≤
cµ(P,w, k) for a constant c ≥ 1, i.e., A is a good approximation of the “centers” of an optimal
k-median clustering. We construct an ε-coreset S of size O((|A| log n)/εd) using A, as follows.

Let Pi ⊆ P , for 1 ≤ i ≤ m, be the set of points for which ai is the nearest neighbor in A.
We draw an exponential grid around ai and choose a subset of O((log n)/εd) points of Pi, with
appropriate weights, for S. Set ρ = µ(P,w,A)/cn, which is a lower bound on the average radius
µ(P,w, k)/n of the optimal k-median clustering. Let Cj be the axis-parallel hypercube with side
length ρ2j centered at ai, for 0 ≤ i ≤ d2 log(cn)e. Set V0 = C0 and Vi = Ci \ Ci−1 for i ≥ 1. We
partition each Vi into a grid of side length ερ2j/α, where α ≥ 1 is a constant. For each grid cell
τ in the resulting exponential grid that contains at least one point of Pi, we choose an arbitrary
point in Pi ∩ τ and set its weight to

∑
p∈Pi∩τ w(p). Let Si be the resulting set of weighted points.

We repeat this step for all points in A, and set S =
⋃m

i=1 Si. Har-Peled and Mazumdar showed that
S is indeed an ε-coreset of P for the k-median problem, provided α is chosen appropriately.

The second ingredient of their construction is the existence of a small “support” set A. Initially,
a random sample of P of O(k log n) points is chosen and the points of P that are “well-served” by
this set of random centers is filtered out. The process is repeated for the remaining points of P
until we get a set A′ of O(k log2 n) support points. Using the above procedure, we can construct an
(1/2)-coreset S of size O(k log3 n). Next, a simple polynomial-time local-search algorithm, described
in [HM04], can be applied to this coreset and a support set A of size k can be constructed, which is
a constant-factor approximation to the optimal k-median/means clustering. Plugging this A back
into the above coreset construction yields an ε-coreset of size O((k/εd) log n).

Theorem 6.4 ([HM04]) Given a set P of n points in Rd, and parameters ε > 0 andk, one can
compute a coreset of P for k-means and k-median clustering of size O((k/εd) log n). The running
time of this algorithm is O(n+ poly(k, log n, 1/ε)), where poly(·) is a polynomial.

17

Using a more involved construction, Har-Peled and Kushal [HK04] showed that for both k-
median and k-means clustering, one can construct a coreset whose size is independent of the size of
the input point set. In particular, they show that there is a coreset of size O(k2/εd) for k-median
and O(k3/εd+1) for k-means.

7 Coresets in High Dimensions

Most of the coreset constructions have exponential dependence on the dimensions. In this section,
we do not consider d to be a fixed constant but assume that it can be as large as the number of
input points. It is natural to ask whether the dependence on the dimension can be reduced or
removed altogether. For example, consider a set P of n points in Rd. A 2-approximate coreset for
the minimum enclosing ball of P has size 2 (just pick a point in P , and its furthest neighbor in P).
Thus, dimension-independent coresets do exist.

As another example, consider the question of whether a small coreset exists for the width
measure of P (i.e., the width of the thinnest slab containing P). It is easy to verify that any
ε-approximate coreset for the width needs to be of size at least 1/εΩ((d−1)/2). Indeed, consider
spherical cap on the unit hypersphere, with angular radius c

√
ε, for appropriate constant c. The

height of this cap is 1 − cos(c
√
ε) ≤ 2ε. Thus, a coreset of the hypersphere, for the measure of

width, in high dimension, would require any such cap to contain at least one point of the coreset.
As such, its size must be exponential, and we conclude that high-dimensional coresets (with size
polynomial in the dimension) do not always exist.

7.1 Minimum enclosing ball

Given a set of points P , an approximation of the minimum radius ball enclosing P can be computed
in polynomial time using the ellipsoid method since this is a quadratic convex programming problem
[Gär95, GLS88]. However, the natural question is whether one can compute a small coreset, Q ⊆ P ,
such that the minimum enclosing ball for Q is a good approximation to the real minimum enclosing
ball.

Bădoiu et al. [BHI02] presented an algorithm, which we have already mentioned in Section 4,
that generates a coreset of size O(1/ε2). The algorithms starts with a set C0 that contains a single
(arbitrary) point of P . Next, in the ith iteration, the algorithm computes the smallest enclosing
ball for Ci−1. If the (1+ε)-expansion of the ball contains P , then we are done, as we have computed
the required coreset. Otherwise, take the point from P furthest from the center of the ball and
add it to the coreset. Bădoiu et al. [BHI02] showed that this algorithm terminates within O(1/ε2)
iterations. The bound was later improved to O(1/ε) by Kumar et al. [KMY03] and Bădoiu and
Clarkson [BC03b]. Bădoiu and Clarkson showed a matching lower bound and gave an elementary
algorithm that uses the “hill climbing” technique. Using this algorithm instead of the ellipsoid
method, we obtain a simple algorithm with running time O(dn/ε+ 1/εO(1)) [BC03a].

It is important to note that this coreset Q is weaker than its low dimensional counterpart: it is
not necessarily true that the (1 + ε)-expansion of any ball containing Q contains P . What is true
is that the smallest ball containing Q, when (1 + ε)-expanded, contains P . In fact, it is easy to
verify that the size of a coreset guaranteeing the stronger property is exponential in the dimension
in the worst case.

Smallest enclosing ball with outliers. As an application of this coreset, one can compute
approximately the smallest ball containing all but k of the points. Indeed, consider the smallest

18

such ball bopt, and consider P ′ = P ∩ bopt. There is a coreset Q ⊆ P ′ such that (1) |Q| = O(1/ε)
and (2) the smallest enclosing ball for Q, if ε-expanded, contains at least n− k points of P . Thus,
one can just enumerate all possible subsets of size O(1/ε) as “candidates” for Q, and for each such
subset, compute its smallest enclosing ball, expand the ball, and check how many points of P it
contains. Finally, the smallest candidate ball that contains at least n−k points of P is the required
approximation. The running time of this algorithm is dnO(1/ε).

k-center. We execute k copies of the incremental algorithm for the min-enclosing ball together.
Whenever getting a new point, we need to determine to which of the k clusters it belongs to.
To this end, we ask an oracle to identify the cluster it belongs to. It is easy to verify that this
algorithm generates an ε-approximate k-center clustering in k/ε iterations. The running time is
O(dkn/ε+ dk/εO(1)).

To remove the oracle, which generates O(k/ε) integer numbers between 1 and k, we just generate
all possible sequence answers that the oracle might give. Since there are O(kO(k/ε)) sequences, we
get that the running time of the new algorithm (which is oracle free) is O(dnkO(k/ε)). One can
even handle outliers; see [BC03a] for details.

7.2 Minimum enclosing cylinder

One natural problem is the computation of a cylinder of minimum radius containing the points
of P . We saw in Section 5 that the line through any point in P and its furthest neighbor is
the axis for a constant-factor approximation. In [HV02], Har-Peled and Varadarajan showed that
there is a subset Q ⊆ P of (1/ε)O(1) points such that the axis of an ε-approximate cylinder lies
in the subspace spanned by Q. By enumerating all possible candidates for Q, and solving a “low-
dimensional” problem for each of the resulting candidate subspaces, they obtain an algorithm that
runs in dn(1/ε)O(1)

time. A slightly faster, but more involved algorithm, was described earlier by
Bădoiu et al. [BHI02].

The algorithm of Har-Peled and Varadarajan extends immediately to the problem of computing
a k-flat (i.e., an affine subspace of dimension k) that minimizes the maximum distance to a point
in P . The resulting running time is dn(k/ε)O(1)

. The approach also handles outliers and multiple
flats.

Linear-time algorithm. A natural approach for improving the running time of the minimum
enclosing cylinder, is to try and adapt the general approach underlying the algorithm of Bădoiu
and Clarkson [BC03a] to the cylinder case. Here, the idea is that we start from a center line `0.
At each iteration, we find the furthest point pi ∈ P from `i−1. We then generate a line `i which is
“closer” to the optimal center line. This can be done by consulting with an oracle, that provides
us with information about how to move the line. By careful implementation, and removing the
oracle, the resulting algorithm takes O(ndCε) time, where Cε = exp

(
1
ε3 log2 1

ε

)
. See [HV04] for

more details.
This also implies a linear time algorithm for computing the minimum radius k-flat. The exact

running time is n · d · exp
(

eO(k2)

ε2k+1 log2 1
ε

)
.

The constants involved were recently improved by Panigrahy [Pan04], who also simplified the
analysis.

Handling multiple slabs in linear time is an open problem for further research. Furthermore,
computing the best k-flat in the presence of outliers in near-linear time is also an open problem.

19

The L2 measure. A natural problem is to compute the k-flat minimizing not the maximum dis-
tance, but rather the sum of squared distances; this is known as the L2 measure, and it can be solved
in O(min(dn2, nd2)) time, using singular value decomposition [GvL96]. Recently, Rademacher et al.
[RVW04] showed that there exists a coreset for this problem. Namely, there are O(k2/ε) points
in P , such that their span contains a k-flat which is a (1 + ε)-approximation to the best k-flat
approximating the point set under the L2 measure. Their proof is not constructive, and it would
be nice to come up with a constructive and efficient algorithm for computing this coreset.

7.3 k-means and k-median clustering

Bădoiu et al. [BHI02] consider the problem of computing a k-median clustering of a set P of n
points in Rd. They show that for a random sample X from P of size O(1/ε3 log 1/ε), the following
two events happen with probability bounded below by a positive constant: (i) The flat span(X)
contains a (1 + ε)-approximate 1-median for P , and (ii) X contains a point close to the center of a
1-median of P . Thus, one can generate a small number of candidate points on span(X), such that
one of those points is a median which is an (1 + ε)-approximate 1-median for P .

To get k-median clustering, one needs to do this random sampling in each of the k clusters.
It is unclear how to do this if those clusters are of completely different cardinality. Bădoiu et al.
[BHI02] suggest an elaborate procedure to do so, by guessing the average radius and cardinality of
the heaviest cluster, generating a candidate set for centers for this cluster using random sampling,
and then recursing on the remaining points. The resulting running time is 2(k/ε)O(1)

dO(1)n logO(k) n,
and the results are correct with high-probability.

A similar procedure works for k-means, see de Vega et al. [dlVKKR03]. Those algorithms were
recently improved to have running time with linear dependency on n, both for the case of k-median
and k-means [KSS04].

7.4 Maximum margin classifier

Let P+ and P− be two sets of points, labeled as positive and negative, respectively. In support
vector machines, one is looking for a hyperplane h such that P+ and P− are on different sides of h,
and the minimum distance between h and the points of P = P+ ∪ P− is maximized. The distance
between h and the closest point of P is known as the margin of h. In particular, the larger the
margin is, the better generalization bounds one can prove on h. See [CS00] for more information
about learning and support vector machines.

In the following, let ∆ = ∆(P) denote the diameter of P , and let ρ denote the width of
the maximum width margin for P . Har-Peled and Zimak [HZ04] showed an iterative algorithm
for computing a coreset for this problem. Specifically, by iteratively picking the point that has
maximum violation of the current classifier to be in the coreset, they show that the algorithm
terminates after O((∆/ρ)2/ε) iterations. Thus, there exist subsets Q− ⊆ P− and Q+ ⊆ P+, such
that the maximum margin linear classifier h for Q+ and Q− has a ≥ (1− ε)ρ margin for P . As in
the case of computing the minimum enclosing ball, one calls a procedure for computing the best
linear separator only on the growing coresets, which are small. Kowalczyk [Kow99] presented a
similar iterative algorithm, but the size of the resulting coreset seems to be larger.

8 Conclusions

In this paper, we have surveyed several approximation algorithms for geometric problems that use
the coreset paradigm. We have certainly not attempted to be comprehensive and our paper does

20

not reflect all the research work that can be viewed as employing this paradigm. For example, we
do not touch upon the body of work on sublinear algorithms [CLM03] or on property testing in
the geometric context [CS01]. Even among the results that we do cover, the choice of topics for
detailed exposition is (necessarily) somewhat subjective.

Acknowledgements. We are grateful to the referees for their detailed, helpful comments.

References

[AAS01] P. K. Agarwal, B. Aronov, and M. Sharir. Exact and approximation algorithms for
minimum-width cylindrical shells. Discrete Comput. Geom., 26(3):307–320, 2001.

[AGHV01] P. K. Agarwal, L. J. Guibas, J. Hershberger, and E. Veach. Maintaining the extent
of a moving point set. Discrete Comput. Geom., 26(3):353–374, 2001.

[AHV04] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures
of points. J. Assoc. Comput. Mach., 51(4):606–635, 2004.

[AM94] P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete
Comput. Geom., 11:393–418, 1994.

[AM98] S. Arya and D. Mount. ANN: library for approximate nearest neighbor searching.
http://www.cs.umd.edu/~mount/ANN/, 1998.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J. Assoc.
Comput. Mach., 45(6), 1998.

[AP02] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clus-
tering. Algorithmica, 33(2):201–226, 2002.

[APV02] P. K. Agarwal, C. M. Procopiuc, and K. R. Varadarajan. Approximation algorithms
for k-line center. In Proc. 10th Annu. European Sympos. Algorithms, pages 54–63,
2002.

[BC03a] M. Bădoiu and K. L. Clarkson. Optimal coresets for balls. http://cm.bell-labs.
com/who/clarkson/coresets2.pdf, 2003.

[BC03b] M. Bădoiu and K. Clarkson. Smaller coresets for balls. In Proc. 14th ACM-SIAM
Sympos. Discrete Algorithms, pages 801–802, 2003.

[BFP82] J. L. Bentley, G. M. Faust, and F. P. Preparata. Approximation algorithms for convex
hulls. Commun. ACM, 25:64–68, 1982.

[BH01] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bound-
ing box of a point set in three dimensions. J. Algorithms, 38:91–109, 2001.

[BHI02] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via coresets. In Proc.
34th Annu. ACM Sympos. Theory Comput., pages 250–257, 2002.

[BI76] E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra.
Siberian Math. J., 16:852–853, 1976.

21

http://www.cs.duke.edu/~pankaj
http://cis.poly.edu/~aronov/
http://www.math.tau.ac.il/~michas
http://www.math.tau.ac.il/~michas/shellqq.ps
http://www.math.tau.ac.il/~michas/shellqq.ps
http://link.springer-ny.com/link/service/journals/00454/
http://www.cs.duke.edu/~pankaj
http://graphics.stanford.edu/papers/extent/
http://graphics.stanford.edu/papers/extent/
http://link.springer-ny.com/link/service/journals/00454/
http://www.cs.duke.edu/~pankaj
http://www.uiuc.edu/~sariel
http://www.cs.uiowa.edu/~kvaradar/
http://www.uiuc.edu/~sariel/papers/01/fitting/
http://www.uiuc.edu/~sariel/papers/01/fitting/
http://www.acm.org/jacm/
http://www.cs.duke.edu/~pankaj
http://kam.mff.cuni.cz/~matousek
http://citeseer.ist.psu.edu/agarwal94range.html
http://link.springer-ny.com/link/service/journals/00454/
http://link.springer-ny.com/link/service/journals/00454/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.cs.umd.edu/~mount/Papers/dist.pdf
http://www.cs.umd.edu/~mount/Papers/dist.pdf
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.cs.duke.edu/~pankaj
http://link.springer.de/link/service/journals/00453/bibs/2033002/20330201.html
http://link.springer.de/link/service/journals/00453/bibs/2033002/20330201.html
http://www.cs.duke.edu/~pankaj
http://www.cs.uiowa.edu/~kvaradar/
http://link.springer.de/link/service/series/0558/bibs/2461/24610054.htm
http://link.springer.de/link/service/series/0558/bibs/2461/24610054.htm
http://theory.lcs.mit.edu/~mihai/
http://cm.bell-labs.com/who/clarkson/
http://cm.bell-labs.com/who/clarkson/coresets2.pdf
http://cm.bell-labs.com/who/clarkson/coresets2.pdf
http://cm.bell-labs.com/who/clarkson/coresets2.pdf
http://cm.bell-labs.com/who/clarkson/coresets2.pdf
http://www.cs.technion.ac.il/~barequet/
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel/research/papers/98/bbox.html
http://www.uiuc.edu/~sariel/research/papers/98/bbox.html
http://theory.lcs.mit.edu/~mihai/
http://www.uiuc.edu/~sariel
http://theory.lcs.mit.edu/~indyk/
http://www.uiuc.edu/~sariel/research/papers/02/coreset/

[BS80] J. L. Bentley and J. B. Saxe. Decomposable searching problems i: Static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980.

[Cha01] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, New York, 2001.

[Cha02] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder and
minimum-width annulus. Internat. J. Comput. Geom. Appl., 12(2):67–85, 2002.

[Cha04] T. M. Chan. Faster coreset constructions and data stream algorithms in fixed dimen-
sions. In Proc. 20th Annu. ACM Sympos. Comput. Geom., pages 152–159, 2004.

[Cla93] K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3th
Workshop Algorithms Data Struct., volume 709 of Lect. Notes in Comp. Sci., pages
246–252. Springer-Verlag, 1993.

[CLM03] B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. In Proc. 35th
Annu. ACM Sympos. Theory Comput., pages 531–540, 2003.

[CS00] N. Cristianini and J. Shaw-Taylor. Support Vector Machines. Cambridge Press, 2000.

[CS01] A. Czumaj and C. Sohler. Property testing with geometric queries. In Proc. 9th
Annu. European Symp. Algorithms, pages 266–277, 2001.

[dFM01] L. da Fontana Costa and R. Marcondes Cesar, Jr. Shape Analysis and Classification.
CRC Press, Boca Raton, 2001.

[dlVKKR03] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes
for clustering problems. In Proc. 35th Annu. ACM Sympos. Theory Comput., pages
50–58, 2003.

[DM98] I. Dryden and K. Mardia. Statistical Shape Analysis. John Wiley and Sons, San
Diego, 1998.

[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
J. Approx. Theory, 10(3):227–236, 1974.

[EHM04] J. Erickson, S. Har-Peled, and D. Mount. On the least median square problem. In
Proc. 20th Annu. ACM Sympos. Comput. Geom., pages 273–279, 2004.

[FG88] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In Proc.
20th Annu. ACM Sympos. Theory Comput., pages 434–444, 1988.

[Gär95] B. Gärtner. A subexponential algorithm for abstract optimization problems. SIAM
J. Comput., 24:1018–1035, 1995.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin
Heidelberg, 2nd edition, 1988. 2nd edition 1994.

[Gon85] T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret.
Comput. Sci., 38:293–306, 1985.

22

http://www.cs.princeton.edu/~chazelle/
http://www.cs.princeton.edu/~chazelle/book.html
http://www.math.uwaterloo.ca/~tmchan/
http://www.worldscinet.com/ijcga/12/1201n02/S0218195902000748.html
http://www.worldscinet.com/ijcga/12/1201n02/S0218195902000748.html
http://www.math.uwaterloo.ca/~tmchan/
http://cm.bell-labs.com/who/clarkson/
http://www.cs.princeton.edu/~chazelle/
http://www.cs.technion.ac.il/~rabani/
http://citeseer.nj.nec.com/delavega03approximation.html
http://citeseer.nj.nec.com/delavega03approximation.html
http://compgeom.cs.uiuc.edu/~jeffe/
http://www.uiuc.edu/~sariel
http://www.cs.umd.edu/~mount/
http://www.inf.ethz.ch/personal/gaertner/texts/own_work/GART_aop.ps.gz

[GvL96] G. H. Golub and C. F. van Loan. Matrix computations. Johns Hopkins University
Press, Baltimore, MD, 3nd edition, 1996.

[Har04a] S. Har-Peled. Clustering motion. Discrete Comput. Geom., 31(4):545–565, 2004.

[Har04b] S. Har-Peled. No coreset, no cry. In Proc. 24th Conf. Found. Soft. Tech. Theoret.
Comput. Sci., 2004. To appear.

[HG97] P. S. Heckbert and M. Garland. Survey of polygonal surface simplification algorithms.
Technical report, CMU-CS, 1997. http://www.uiuc.edu/˜garland/papers.html.

[HK04] S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering.
http://www.uiuc.edu/˜sariel/papers/04/small coreset/, 2004.

[HM04] S. Har-Peled and S. Mazumdar. Coresets for k-means and k-median clustering and
their applications. In Proc. 36th Annu. ACM Sympos. Theory Comput., pages 291–
300, 2004.

[HV02] S. Har-Peled and K. R. Varadarajan. Projective clustering in high dimensions using
coresets. In Proc. 18th Annu. ACM Sympos. Comput. Geom., pages 312–318, 2002.

[HV04] S. Har-Peled and K. R. Varadarajan. High-dimensional shape fitting in linear time.
Discrete Comput. Geom., 32(2):269–288, 2004.

[HW87] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete Comput. Geom.,
2:127–151, 1987.

[HW04] S. Har-Peled and Y. Wang. Shape fitting with outliers. SIAM J. Comput., 33(2):269–
285, 2004.

[HZ04] S. Har-Peled and D. Zimak. Coresets for SVM. manuscript, 2004.

[Joh48] F. John. Extremum problems with inequalities as subsidary conditions. Courant
Anniversary, pages 187–204, 1948.

[KMY03] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim. Approximate minimum enclosing
balls in high dimensions using coresets. J. Exp. Algorithmics, 8:1.1, 2003.

[Kow99] A. Kowalczyk. Maximal margin perceptron. In A.J. Smola, P.L. Bartlett,
B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classiers, pages
75–114. MIT Press, 1999.

[KSS04] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ε)-approximation al-
gorithm for k-means clustering in any dimensions. In Proc. 45th Annu. IEEE Sympos.
Found. Comput. Sci., pages 454–462, 2004.

[KY04] P. Kumar and E.A. Yildirim. Approximating minimum volume enclosing ellipsoids
using core sets. J. Opt. Theo. Appl., 2004. to appear.

[Mul94] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Al-
gorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

[Pan04] R. Panigrahy. Minimum enclosing polytope in high dimensions. menuscript, 2004.

23

http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel/research/papers/01/cluster/
http://link.springer-ny.com/link/service/journals/00454/
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel/papers/02/2slab/
http://www.uiuc.edu/ garland/papers.html
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel/papers/04/small_coreset/
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel/research/papers/03/kcoreset/
http://www.uiuc.edu/~sariel/research/papers/03/kcoreset/
http://www.uiuc.edu/~sariel
http://www.cs.uiowa.edu/~kvaradar/
http://www.uiuc.edu/~sariel/research/papers/01/kflat/
http://www.uiuc.edu/~sariel/research/papers/01/kflat/
http://www.uiuc.edu/~sariel
http://www.cs.uiowa.edu/~kvaradar/
http://www.uiuc.edu/~sariel/research/papers/02/pcluster/
http://link.springer-ny.com/link/service/journals/00454/
http://link.springer-ny.com/link/service/journals/00454/
http://www.uiuc.edu/~sariel
http://www.cs.duke.edu/~wys/
http://epubs.siam.org/sam-bin/dbq/article/42796
http://www.uiuc.edu/~sariel
http://www.compgeom.com/~piyush
http://www.compgeom.com/~piyush/meb/journal.pdf
http://www.compgeom.com/~piyush/meb/journal.pdf
http://www.compgeom.com/~piyush

[RVW04] L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective
clustering via adaptive sampling. manuscript, 2004.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory Probab. Appl., 16:264–280, 1971.

[Wes93] G. Wesolowsky. The Weber problem: History and perspective. Location Science,
1:5–23, 1993.

[YAPV04] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for
shape fitting and kinetic data structures using core sets. In Proc. 20th Annu. ACM
Sympos. Comput. Geom., pages 263–272, 2004.

[ZS02] Y. Zhou and S. Suri. Algorithms for a minimum volume enclosing simplex in three
dimensions. SIAM J. Comput., 31(5):1339–1357, 2002.

24

http://www.cs.duke.edu/~pankaj
http://www.cs.uiowa.edu/~kvaradar/
http://epubs.siam.org/sam-bin/dbq/article/36399
http://epubs.siam.org/sam-bin/dbq/article/36399

	Introduction
	Kernels for Point Sets
	Kernels for Sets of Functions
	An Incremental Algorithm for Shape Fitting
	Coresets in a Streaming Setting
	Coresets for Clustering
	k-center and its variants

	Coresets in High Dimensions
	Minimum enclosing ball
	Minimum enclosing cylinder
	k-means and k-median clustering
	Maximum margin classifier

	Conclusions

